178 research outputs found

    An Experimental Investigation on the Air Permeability of Passive Ventilation Grilles

    Get PDF
    Abstract The need of increasing both energy saving and acoustic insulation has leaded to the design of lowest air permeability frames resulting in the worsening of indoor air quality. Moreover, sometime in several civil-use existing buildings (i.e. schools or houses, historical buildings) mechanical ventilation systems cannot be installed due to non-removable constraints. In these cases, passive ventilation grilles are a cheap and effective solution for the ventilation. This work deals with an in-depth experimental analysis about the air permeability values measured over a set of passive ventilation grilles available on the market. Obtained results often showed performances very far to those declared. This is not due to multiplicity of involved parameters affecting their behaviour rather to a lack of standardized test methods

    Potential for building Façade-integrated solar thermal collectors in a highly urbanized context

    Get PDF
    Development of technologies, materials, support systems, and coatings has made the integration of solar thermal systems into the building envelope increasingly possible. Solar thermal collectors can either be directly integrated, substituting conventional roof or façade covering materials, or constitute independent devices added to a roof or façade structure. Aimed at estimating the real effectiveness of building-integrated solar systems for domestic heat water (DHW) production or for heating integration, when horizontal or inclined pitches on buildings are not applicable, the authors analyze a case study with different scenarios, taking into account the issues connected to a highly urbanized context in the Mediterranean climate. A GIS model was used for estimating the energy balance, while the real producibility of the simulated systems was calculated by a dynamic hourly simulation model, realized according to ISO 52016. The savings in terms of primary energy needs obtained by installing solar thermal systems on the facade are presented, and the differences between the cases in which the system is used for DHW production only and for space heating too are distinguished and discussed. The evaluated potential is quantified in the absence of roof collectors, despite their high potential in the Mediterranean region, in order to better appreciate the effects induced by integrated facade systems

    A novel measurement method for accurate heat accounting in historical buildings

    Get PDF
    Nowadays, two different heat accounting methods are available: the direct method, based on heat meters, and the indirect one, based on heat cost allocators. Unfortunately, in existing buildings, due to the plant configuration, heat meters are often technically unfeasible or not cost efficient, whereas heat cost allocators can be easily installed in almost all conditions. At the same time, the indirect method relies on a high number of interconnected devices with installation and operative conditions often variable within the same building and influencing the on-field metrological performances. In this paper, the authors propose a novel "hybrid" method for accurate heat accounting combining the advantages of indirect method with the higher accuracy typical of direct methods. The proposed method has been experimented at INRIM, the primary metrology institute in Italy, assessing the on-field performance in a virtual eight-apartments building. The experimental results show that the proposed method always presents improved accuracy. (C) 2020 Elsevier Ltd. All rights reserved

    An innovative method for the thermal conductance measurement of windows

    Get PDF
    Paper presented at the 5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 1-4 July, 2007.One of the most important contributions to the energy requirements in buildings is due to heat transfer through the window surfaces. Therefore, several efforts were made in order to obtain new window frames and glass assemblies with low thermal heat transfer characteristics. To this point of view, it is also necessary to reach accurate measurements of the abovementioned parameters. In this paper, the authors show an innovative measurement method based on radiative and conductive heat transfer which performs window thermal conductance measurements with annexed uncertainty budget evaluation. In the design of the experimental apparatus the authors used a 3D finite volume software whose results were useful for the system optimisation and characterisation.cs201

    Factors affecting the development of Bovine Respiratory Disease: a cross-sectional study in beef steers shipped from France to Italy

    Get PDF
    Bovine respiratory disease (BRD) is a complex, multifactorial syndrome and one of the major welfare and economical concerns for the cattle industry. This 1-year cross-sectional study was aimed at documenting the prevalence of BRD-related pathogens and clinical signs before and after a long journey and at identifying possible predisposition factors. Male Limousine beef steers (n = 169) traveling from France to Italy were health checked and sampled with Deep Nasopharyngeal Swabs (DNS) at loading (T0) and 4 days after arrival (T1). Real-time quantitative PCR was used to quantify the presence of bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine alphaherpesvirus 1 (BoHV-1), bovine coronavirus (BCoV), bovine adenovirus (BAdV), bovine parainfluenza virus 3 (BPIV-3), Histophilus somni, Mannheimia haemolytica, Mycoplasma bovis, and Pasteurella multocida. Weather conditions at departure and arrival were recorded, and the travel conditions were taken from the travel documentation. At T0, even if no animals displayed clinical signs, some of them were already positive for one or more pathogens. At T1, the number of animals displaying clinical signs and positive for BCoV, BAdV, BRSV, H. somni, M. haemolytica, M. bovis, and P. multocida increased dramatically (p < 0.001). Transport also significantly increased co-infection passing from 16.0% at T0 to 82.8% at T1 (p < 0.001). An extra stop during the journey seemed to favor BRSV, M. haemolytica, and P. multocida (p < 0.05). Weather conditions, in particular sudden climate changes from departure to arrival and daily temperature variance, were found to be predisposing factors for many of the pathogens. The farm of arrival also played a role for BRSV, BAdV, and H. somni (p < 0.05). BCoV increased dramatically, but no associations were found confirming that it spreads easily during transport phases. Our findings increased our understanding of factors increasing the likelihood of BRD-related pathogens shedding and can be useful to minimize the incidence of BRD and to implement animal transport regulations
    • …
    corecore