58 research outputs found

    EGCG Prevents High Fat Diet-Induced Changes in Gut Microbiota, Decreases of DNA Strand Breaks, and Changes in Expression and DNA Methylation of Dnmt1

    Get PDF
    Obesity as a multifactorial disorder involves low-grade inflammation, increased reactive oxygen species incidence, gut microbiota aberrations, and epigenetic consequences. Thus, prevention and therapies with epigenetic active antioxidants, (-)-Epigallocatechin-3-gallate (EGCG), are of increasing interest. DNA damage, DNA methylation and gene expression of DNA methyltransferase 1, interleukin 6, and MutL homologue 1 were analyzed in C57BL/6J male mice fed a high-fat diet (HFD) or a control diet (CD) with and without EGCG supplementation. Gut microbiota was analyzed with quantitative real-time polymerase chain reaction. An induction of DNA damage was observed, as a consequence of HFD-feeding, whereas EGCG supplementation decreased DNA damage. HFD-feeding induced a higher inflammatory status. Supplementation reversed these effects, resulting in tissue specific gene expression and methylation patterns of DNA methyltransferase 1 and MutL homologue 1. HFD feeding caused a significant lower bacterial abundance. The Firmicutes/Bacteroidetes ratio is significantly lower in HFD + EGCG but higher in CD + EGCG compared to control groups. The results demonstrate the impact of EGCG on the one hand on gut microbiota which together with dietary components affects host health. On the other hand effects may derive from antioxidative activities as well as epigenetic modifications observed on CpG methylation but also likely to include other epigenetic elements

    Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives

    Get PDF
    Changes in climate, land use, and land management impact the occurrence and severity of wildland fires in many parts of the world. This is particularly evident in Europe, where ongoing changes in land use have strongly modified fire patterns over the last decades. Although satellite data by the European Forest Fire Information System provide large-scale wildland fire statistics across European countries, there is still a crucial need to collect and summarize in-depth local analysis and understanding of the wildland fire condition and associated challenges across Europe. This article aims to provide a general overview of the current wildland fire patterns and challenges as perceived by national representatives, supplemented by national fire statistics (2009–2018) across Europe. For each of the 31 countries included, we present a perspective authored by scientists or practitioners from each respective country, representing a wide range of disciplines and cultural backgrounds. The authors were selected from members of the COST Action “Fire and the Earth System: Science & Society” funded by the European Commission with the aim to share knowledge and improve communication about wildland fire. Where relevant, a brief overview of key studies, particular wildland fire challenges a country is facing, and an overview of notable recent fire events are also presented. Key perceived challenges included (1) the lack of consistent and detailed records for wildland fire events, within and across countries, (2) an increase in wildland fires that pose a risk to properties and human life due to high population densities and sprawl into forested regions, and (3) the view that, irrespective of changes in management, climate change is likely to increase the frequency and impact of wildland fires in the coming decades. Addressing challenge (1) will not only be valuable in advancing national and pan-European wildland fire management strategies, but also in evaluating perceptions (2) and (3) against more robust quantitative evidence

    Mass Flows of X-ray Contrast Media and Cytostatics in Hospital Wastewater

    No full text
    Little is known about the significance of hospitals as point sources for emission of organic micropollutants into the aquatic environment. A mass flow analysis of pharmaceuticals and diagnostics used in hospitals was performed on the site of a representative Swiss cantonal hospital. Specifically, we analyzed the consumption of iodinated X-ray contrast media (ICM) and cytostatics in their corresponding medical applications of radiology and oncology, respectively, and their discharge into hospital wastewater and eventually into the wastewater of the municipal wastewater treatment plant. Emission levels within one day and over several days were found to correlate with the pharmacokinetic excretion pattern and the consumed amounts in the hospital during these days. ICM total emissions vary substantially from day to day from 255 to 1259 g/d, with a maximum on the day when the highest radiology treatment occurred. Parent cytostatic compounds reach maximal emissions of 8−10 mg/d. A total of 1.1%, 1.4%, and 3.7% of the excreted amounts of the cytostatics 5-fluorouracil, gemcitabine, and 2′,2′-difluorodeoxyuridine (main metabolite of gemcitabine), respectively, were found in the hospital wastewater, whereas 49% of the total ICM was detected, showing a high variability among the compounds. These recoveries can essentially be explained by the high amount administered to out-patients (70% for cytostatics and 50% for ICM); therefore, only part of this dose is expected to be excreted on-site. In addition, this study emphasizes critical issues to consider when sampling in hospital sewer systems. Flow proportional sampling over a longer period is crucial to compute robust hospital mass flows
    corecore