529 research outputs found

    Injected Power Fluctuations in 1D Dissipative Systems

    Full text link
    Using fermionic techniques, we compute exactly the large deviation function (ldf) of the time-integrated injected power in several one-dimensional dissipative systems of classical spins. The dynamics are T=0 Glauber dynamics supplemented by an injection mechanism, which is taken as a Poissonian flipping of one particular spin. We discuss the physical content of the results, specifically the influence of the rate of the Poisson process on the properties of the ldf.Comment: 18 pages, 8 figure

    Entropic Elasticity of Phantom Percolation Networks

    Full text link
    A new method is used to measure the stress and elastic constants of purely entropic phantom networks, in which a fraction pp of neighbors are tethered by inextensible bonds. We find that close to the percolation threshold pcp_c the shear modulus behaves as (ppc)f(p-p_c)^f, where the exponent f1.35f\approx 1.35 in two dimensions, and f1.95f\approx 1.95 in three dimensions, close to the corresponding values of the conductivity exponent in random resistor networks. The components of the stiffness tensor (elastic constants) of the spanning cluster follow a power law (ppc)g\sim(p-p_c)^g, with an exponent g2.0g\approx 2.0 and 2.6 in two and three dimensions, respectively.Comment: submitted to the Europhys. Lett., 7 pages, 5 figure

    Globular Structures of a Helix-Coil Copolymer: Self-Consistent Treatment

    Full text link
    A self-consistent field theory was developed in the grand-canonical ensemble formulation to study transitions in a helix-coil multiblock globule. Helical and coil parts are treated as stiff rods and self-avoiding walks of variable lengths correspondingly. The resulting field-theory takes, in addition to the conventional Zimm-Bragg (B.H. Zimm, I.K. Bragg, J. Chem. Phys. 31, 526 (1959)) parameters, also three-dimensional interaction terms into account. The appropriate differential equations which determine the self-consistent fields were solved numerically with finite element method. Three different phase states are found: open chain, amorphous globule and nematic liquid-crystalline (LC) globule. The LC-globule formation is driven by the interplay between the hydrophobic helical segments attraction and the anisotropic globule surface energy of an entropic nature. The full phase diagram of the helix-coil copolymer was calculated and thoroughly discussed. The suggested theory shows a clear interplay between secondary and tertiary structures in globular homopolypeptides.Comment: 26 pages, 30 figures, corrected some typo

    Current large deviations in a driven dissipative model

    Full text link
    We consider lattice gas diffusive dynamics with creation-annihilation in the bulk and maintained out of equilibrium by two reservoirs at the boundaries. This stochastic particle system can be viewed as a toy model for granular gases where the energy is injected at the boundary and dissipated in the bulk. The large deviation functional for the particle currents flowing through the system is computed and some physical consequences are discussed: the mechanism for local current fluctuations, dynamical phase transitions, the fluctuation-relation

    Algebraic Correlation Function and Anomalous Diffusion in the HMF model

    Get PDF
    In the quasi-stationary states of the Hamiltonian Mean-Field model, we numerically compute correlation functions of momenta and diffusion of angles with homogeneous initial conditions. This is an example, in a N-body Hamiltonian system, of anomalous transport properties characterized by non exponential relaxations and long-range temporal correlations. Kinetic theory predicts a striking transition between weak anomalous diffusion and strong anomalous diffusion. The numerical results are in excellent agreement with the quantitative predictions of the anomalous transport exponents. Noteworthy, also at statistical equilibrium, the system exhibits long-range temporal correlations: the correlation function is inversely proportional to time with a logarithmic correction instead of the usually expected exponential decay, leading to weak anomalous transport properties

    Elasticity of Gaussian and nearly-Gaussian phantom networks

    Full text link
    We study the elastic properties of phantom networks of Gaussian and nearly-Gaussian springs. We show that the stress tensor of a Gaussian network coincides with the conductivity tensor of an equivalent resistor network, while its elastic constants vanish. We use a perturbation theory to analyze the elastic behavior of networks of slightly non-Gaussian springs. We show that the elastic constants of phantom percolation networks of nearly-Gaussian springs have a power low dependence on the distance of the system from the percolation threshold, and derive bounds on the exponents.Comment: submitted to Phys. Rev. E, 10 pages, 1 figur

    Características físico-químicas de meis produzidos por espécies de meliponíneos.

    Get PDF
    Além da abelhas Africanizadas (Apis mellifera L.), as abelhas indígenas sem ferrão ou meliponíneos (Meliponinae) são potenciais produtoras de mel. Esse produto apresenta carcterísticas distintas do mel produzido pelas abelhas do gênero Apis, sendo muito apreciado pelos consumidores. Entretanto, são escassos os dados científicos a respeito da composição desse mel na literatura nacional e internacional. A proposta deste trabalho é avaliar as características físico-químicas do mel produzido por meliponíneos. As análises físico-químico foram realizadas de acordo com as técnicas descritas pela AOAC (Association of Official Analytical Chemists), e pela European Honey Comission, conforme recomendado pela CAC (Codex Alimentarius Comission). Os resultados obtidos reforçam a necessidade do desenvolvimento de um padrão próprio para os méis de abelhas sem ferrão, incluindo critérios microbiológicos.Disponível também em: Cadernos de Agroecologia, V. 5, n.1, 2010

    Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts

    Get PDF
    In order to study the mechanisms limiting the topological chain confinement in polymer melts, we have performed neutron-spin-echo investigations of the single-chain dynamic-structure factor from polyethylene melts over a large range of chain lengths. While at high molecular weight the reptation model is corroborated, a systematic loosening of the confinement with decreasing chain length is found. The dynamic-structure factors are quantitatively described by the effect of contour-length fluctuations on the confining tube, establishing this mechanism on a molecular level in space and time

    Damped finite-time-singularity driven by noise

    Full text link
    We consider the combined influence of linear damping and noise on a dynamical finite-time-singularity model for a single degree of freedom. We find that the noise effectively resolves the finite-time-singularity and replaces it by a first-passage-time or absorbing state distribution with a peak at the singularity and a long time tail. The damping introduces a characteristic cross-over time. In the early time regime the probability distribution and first-passage-time distribution show a power law behavior with scaling exponent depending on the ratio of the non linear coupling strength to the noise strength. In the late time regime the behavior is controlled by the damping. The study might be of relevance in the context of hydrodynamics on a nanometer scale, in material physics, and in biophysics.Comment: 9 pages, 4 eps-figures, revtex4 fil
    corecore