529 research outputs found
Injected Power Fluctuations in 1D Dissipative Systems
Using fermionic techniques, we compute exactly the large deviation function
(ldf) of the time-integrated injected power in several one-dimensional
dissipative systems of classical spins. The dynamics are T=0 Glauber dynamics
supplemented by an injection mechanism, which is taken as a Poissonian flipping
of one particular spin. We discuss the physical content of the results,
specifically the influence of the rate of the Poisson process on the properties
of the ldf.Comment: 18 pages, 8 figure
Entropic Elasticity of Phantom Percolation Networks
A new method is used to measure the stress and elastic constants of purely
entropic phantom networks, in which a fraction of neighbors are tethered by
inextensible bonds. We find that close to the percolation threshold the
shear modulus behaves as , where the exponent in two
dimensions, and in three dimensions, close to the corresponding
values of the conductivity exponent in random resistor networks. The components
of the stiffness tensor (elastic constants) of the spanning cluster follow a
power law , with an exponent and 2.6 in two and
three dimensions, respectively.Comment: submitted to the Europhys. Lett., 7 pages, 5 figure
Globular Structures of a Helix-Coil Copolymer: Self-Consistent Treatment
A self-consistent field theory was developed in the grand-canonical ensemble
formulation to study transitions in a helix-coil multiblock globule. Helical
and coil parts are treated as stiff rods and self-avoiding walks of variable
lengths correspondingly. The resulting field-theory takes, in addition to the
conventional Zimm-Bragg (B.H. Zimm, I.K. Bragg, J. Chem. Phys. 31, 526 (1959))
parameters, also three-dimensional interaction terms into account. The
appropriate differential equations which determine the self-consistent fields
were solved numerically with finite element method. Three different phase
states are found: open chain, amorphous globule and nematic liquid-crystalline
(LC) globule. The LC-globule formation is driven by the interplay between the
hydrophobic helical segments attraction and the anisotropic globule surface
energy of an entropic nature. The full phase diagram of the helix-coil
copolymer was calculated and thoroughly discussed. The suggested theory shows a
clear interplay between secondary and tertiary structures in globular
homopolypeptides.Comment: 26 pages, 30 figures, corrected some typo
Current large deviations in a driven dissipative model
We consider lattice gas diffusive dynamics with creation-annihilation in the
bulk and maintained out of equilibrium by two reservoirs at the boundaries.
This stochastic particle system can be viewed as a toy model for granular gases
where the energy is injected at the boundary and dissipated in the bulk. The
large deviation functional for the particle currents flowing through the system
is computed and some physical consequences are discussed: the mechanism for
local current fluctuations, dynamical phase transitions, the
fluctuation-relation
Algebraic Correlation Function and Anomalous Diffusion in the HMF model
In the quasi-stationary states of the Hamiltonian Mean-Field model, we
numerically compute correlation functions of momenta and diffusion of angles
with homogeneous initial conditions. This is an example, in a N-body
Hamiltonian system, of anomalous transport properties characterized by non
exponential relaxations and long-range temporal correlations. Kinetic theory
predicts a striking transition between weak anomalous diffusion and strong
anomalous diffusion. The numerical results are in excellent agreement with the
quantitative predictions of the anomalous transport exponents. Noteworthy, also
at statistical equilibrium, the system exhibits long-range temporal
correlations: the correlation function is inversely proportional to time with a
logarithmic correction instead of the usually expected exponential decay,
leading to weak anomalous transport properties
Elasticity of Gaussian and nearly-Gaussian phantom networks
We study the elastic properties of phantom networks of Gaussian and
nearly-Gaussian springs. We show that the stress tensor of a Gaussian network
coincides with the conductivity tensor of an equivalent resistor network, while
its elastic constants vanish. We use a perturbation theory to analyze the
elastic behavior of networks of slightly non-Gaussian springs. We show that the
elastic constants of phantom percolation networks of nearly-Gaussian springs
have a power low dependence on the distance of the system from the percolation
threshold, and derive bounds on the exponents.Comment: submitted to Phys. Rev. E, 10 pages, 1 figur
Características físico-químicas de meis produzidos por espécies de meliponíneos.
Além da abelhas Africanizadas (Apis mellifera L.), as abelhas indígenas sem ferrão ou meliponíneos (Meliponinae) são potenciais produtoras de mel. Esse produto apresenta carcterísticas distintas do mel produzido pelas abelhas do gênero Apis, sendo muito apreciado pelos consumidores. Entretanto, são escassos os dados científicos a respeito da composição desse mel na literatura nacional e internacional. A proposta deste trabalho é avaliar as características físico-químicas do mel produzido por meliponíneos. As análises físico-químico foram realizadas de acordo com as técnicas descritas pela AOAC (Association of Official Analytical Chemists), e pela European Honey Comission, conforme recomendado pela CAC (Codex Alimentarius Comission). Os resultados obtidos reforçam a necessidade do desenvolvimento de um padrão próprio para os méis de abelhas sem ferrão, incluindo critérios microbiológicos.Disponível também em: Cadernos de Agroecologia, V. 5, n.1, 2010
Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts
In order to study the mechanisms limiting the topological chain confinement in polymer melts, we have performed neutron-spin-echo investigations of the single-chain dynamic-structure factor from polyethylene melts over a large range of chain lengths. While at high molecular weight the reptation model is corroborated, a systematic loosening of the confinement with decreasing chain length is found. The dynamic-structure factors are quantitatively described by the effect of contour-length fluctuations on the confining tube, establishing this mechanism on a molecular level in space and time
Damped finite-time-singularity driven by noise
We consider the combined influence of linear damping and noise on a dynamical
finite-time-singularity model for a single degree of freedom. We find that the
noise effectively resolves the finite-time-singularity and replaces it by a
first-passage-time or absorbing state distribution with a peak at the
singularity and a long time tail. The damping introduces a characteristic
cross-over time. In the early time regime the probability distribution and
first-passage-time distribution show a power law behavior with scaling exponent
depending on the ratio of the non linear coupling strength to the noise
strength. In the late time regime the behavior is controlled by the damping.
The study might be of relevance in the context of hydrodynamics on a nanometer
scale, in material physics, and in biophysics.Comment: 9 pages, 4 eps-figures, revtex4 fil
- …