827 research outputs found

    Resistance to Digitisation: Curated Memory Cards Artefact

    Get PDF
    date-added: 2015-03-24 04:16:59 +0000 date-modified: 2015-03-24 04:16:59 +0000date-added: 2015-03-24 04:16:59 +0000 date-modified: 2015-03-24 04:16:59 +0000The act of networking in any context has some element of ceremonial performance attached to it. In an analogue world these performances have historically included the act of exchanging business cards. This ‘ceremony of networking’ has the potential to be altered by the emergence of new media, especially digital technology, displacing the old ceremony of business card exchanges and disrupting what can traditional be seen as networking. The history of business cards have shown that, despite several digital alternatives, they are still resistant to digitisation and so predominantly still physical and tangible. So, we sought to explore the ceremony around giving business cards as the sharing of ‘curated memory’, to better understand how and why we share and co-create curated memories with others. Including the sharing curated memories more generally, and the changing nature of networking, arising from the ever-increasing connectivity and digital embeddedness associated with the information age. Therefore, exploring the ceremony around needing, creating, sharing and using business cards, within different contexts and cultures. Also, identifying the tasks that people are trying to perform and optimise at different stages (before, during, and after) in a range of scenarios. Also, to explore how the ceremonies of networking might be significantly altered as a result of digital media and tools. The approach of using sets of cards around Who, How, Why and Where emerged from the need for a tool that could build narratives around the considerable diversity of the disjointed scenarios of networking we observed. So, the cards provide a reference by which to share general understanding in an entertaining and easily accessible manner. Second, provides a tool to summarise narratives from the scenarios we observed, and that we could then use to create new scenarios to explore insights such as post-meeting curation of ‘shared memories’ when networking. Third, define a number of ‘games’ to help anyone explore how to better understand and utilise aspects of networking in their current approaches, and challenge them to develop new approaches. Therefore, generating debate and self-reflection on the ways players use business cards themselves

    The fundamental cycle of concept construction underlying various theoretical frameworks

    Get PDF
    In this paper, the development of mathematical concepts over time is considered. Particular reference is given to the shifting of attention from step-by-step procedures that are performed in time, to symbolism that can be manipulated as mental entities on paper and in the mind. The development is analysed using different theoretical perspectives, including the SOLO model and various theories of concept construction to reveal a fundamental cycle underlying the building of concepts that features widely in different ways of thinking that occurs throughout mathematical learning

    Large-uncertainty intelligent states for angular momentum and angle

    Get PDF
    The equality in the uncertainty principle for linear momentum and position is obtained for states which also minimize the uncertainty product. However, in the uncertainty relation for angular momentum and angular position both sides of the inequality are state dependent and therefore the intelligent states, which satisfy the equality, do not necessarily give a minimum for the uncertainty product. In this paper, we highlight the difference between intelligent states and minimum uncertainty states by investigating a class of intelligent states which obey the equality in the angular uncertainty relation while having an arbitrarily large uncertainty product. To develop an understanding for the uncertainties of angle and angular momentum for the large-uncertainty intelligent states we compare exact solutions with analytical approximations in two limiting cases.Comment: 20 pages, 9 figures, submitted to J. Opt. B special issue in connection with ICSSUR 2005 conferenc

    Solvable model of a strongly-driven micromaser

    Full text link
    We study the dynamics of a micromaser where the pumping atoms are strongly driven by a resonant classical field during their transit through the cavity mode. We derive a master equation for this strongly-driven micromaser, involving the contributions of the unitary atom-field interactions and the dissipative effects of a thermal bath. We find analytical solutions for the temporal evolution and the steady-state of this system by means of phase-space techniques, providing an unusual solvable model of an open quantum system, including pumping and decoherence. We derive closed expressions for all relevant expectation values, describing the statistics of the cavity field and the detected atomic levels. The transient regime shows the build-up of mixtures of mesoscopic fields evolving towards a superpoissonian steady-state field that, nevertheless, yields atomic correlations that exhibit stronger nonclassical features than the conventional micromaser.Comment: 9 pages, 16 figures. Submitted for publicatio

    Final Report - ILAW PCT, VHT, Viscosity, and Electrical Conductivity Model Development, VSL-07R1230-1

    Get PDF
    This report describes the results of work and testing specified by the Test Specifications (24590-LAW-TSP-RT-01-013 Rev.1 and 24590-WTP-TSP-RT-02-001 Rev.0), Test Plans (VSL-02T4800-1 Rev.1 & TP-RPP-WTP-179 Rev.1), and Text Exception (24590-WTP-TEF-RT-03-040). The work and any associated testing followed established quality assurance requirements and conducted as authorized. The descriptions provided in this test report are an accurate account of both the conduct of the work and the data collected. Results required by the Test Plans are reported. Also reported are any unusual or anomalous occurrences that are different from the starting hypotheses. The test results and this report have been reviewed and verified

    Direct sampling of exponential phase moments of smoothed Wigner functions

    Get PDF
    We investigate exponential phase moments of the s-parametrized quasidistributions (smoothed Wigner functions). We show that the knowledge of these moments as functions of s provides, together with photon-number statistics, a complete description of the quantum state. We demonstrate that the exponential phase moments can be directly sampled from the data recorded in balanced homodyne detection and we present simple expressions for the sampling kernels. The phase moments are Fourier coefficients of phase distributions obtained from the quasidistributions via integration over the radial variable in polar coordinates. We performed Monte Carlo simulations of the homodyne detection and we demonstrate the feasibility of direct sampling of the moments and subsequent reconstruction of the phase distribution.Comment: RevTeX, 8 pages, 6 figures, accepted Phys. Rev.

    The Josephson plasmon as a Bogoliubov quasiparticle

    Get PDF
    We study the Josephson effect in alkali atomic gases within the two-mode approximation and show that there is a correspondence between the Bogoliubov description and the harmonic limit of the phase representation. We demonstrate that the quanta of the Josephson plasmon can be identified with the Bogoliubov excitations of the two-site Bose fluid. We thus establish a mapping between the Bogoliubov approximation for the many-body theory and the linearized pendulum Hamiltonian.Comment: 9 pages, LaTeX, submitted to J. Phys.

    Evolution of the superposition of displaced number states with the two-atom multiphoton Jaynes-Cummings model: interference and entanglement

    Full text link
    In this paper we study the evolution of the two two-level atoms interacting with a single-mode quantized radiation field, namely, two-atom multiphoton Jaynes-Cummings model when the radiation field and atoms are initially prepared in the superpostion of displaced number states and excited atomic states, respectively. For this system we investigate the atomic inversion, Wigner function, phase distribution and entanglement.Comment: 18 pages, 17 figure

    Adaptive single-shot phase measurements: The full quantum theory

    Full text link
    The phase of a single-mode field can be measured in a single-shot measurement by interfering the field with an effectively classical local oscillator of known phase. The standard technique is to have the local oscillator detuned from the system (heterodyne detection) so that it is sometimes in phase and sometimes in quadrature with the system over the course of the measurement. This enables both quadratures of the system to be measured, from which the phase can be estimated. One of us [H.M. Wiseman, Phys. Rev. Lett. 75, 4587 (1995)] has shown recently that it is possible to make a much better estimate of the phase by using an adaptive technique in which a resonant local oscillator has its phase adjusted by a feedback loop during the single-shot measurement. In Ref.~[H.M. Wiseman and R.B. Killip, Phys. Rev. A 56, 944] we presented a semiclassical analysis of a particular adaptive scheme, which yielded asymptotic results for the phase variance of strong fields. In this paper we present an exact quantum mechanical treatment. This is necessary for calculating the phase variance for fields with small photon numbers, and also for considering figures of merit other than the phase variance. Our results show that an adaptive scheme is always superior to heterodyne detection as far as the variance is concerned. However the tails of the probability distribution are surprisingly high for this adaptive measurement, so that it does not always result in a smaller probability of error in phase-based optical communication.Comment: 17 pages, LaTeX, 8 figures (concatenated), Submitted to Phys. Rev.

    Finite quantum tomography via semidefinite programming

    Full text link
    Using the the convex semidefinite programming method and superoperator formalism we obtain the finite quantum tomography of some mixed quantum states such as: qudit tomography, N-qubit tomography, phase tomography and coherent spin state tomography, where that obtained results are in agreement with those of References \cite{schack,Pegg,Barnett,Buzek,Weigert}.Comment: 25 page
    corecore