12,304 research outputs found
Effect of symmetry distortions on photoelectron selection rules and spectra of Bi_2Sr_2CaCu_2O_{8+ delta}
We derive photoelectron selection rules along the glide plane in orthorhombic
Bi_2Sr_2CaCu_2O_{8+\delta} (Bi2212). These selection rules explain the reversed
intensity behavior of the shadow and the main band of the material as a natural
consequence of the variating representation of the final state as a function of
k_\parallel. Our one-step simulations strongly support the structural origin of
the shadow band but we also introduce a scenario for detecting
antiferromagnetic signatures in low doping.Comment: AMS-LaTeX, 5 pages, 4 figure
The NASA/MSFC global reference atmospheric model: MOD 3 (with spherical harmonic wind model)
Improvements to the global reference atmospheric model are described. The basic model includes monthly mean values of pressure, density, temperature, and geostrophic winds, as well as quasi-biennial and small and large scale random perturbations. A spherical harmonic wind model for the 25 to 90 km height range is included. Below 25 km and above 90 km, the GRAM program uses the geostrophic wind equations and pressure data to compute the mean wind. In the altitudes where the geostrophic wind relations are used, an interpolation scheme is employed for estimating winds at low latitudes where the geostrophic wind relations being to mesh down. Several sample wind profiles are given, as computed by the spherical harmonic model. User and programmer manuals are presented
The supernova-regulated ISM. I. The multi-phase structure
We simulate the multi-phase interstellar medium randomly heated and stirred
by supernovae, with gravity, differential rotation and other parameters of the
solar neighbourhood. Here we describe in detail both numerical and physical
aspects of the model, including injection of thermal and kinetic energy by SN
explosions, radiative cooling, photoelectric heating and various transport
processes. With 3D domain extending 1 kpc^2 horizontally and 2 kpc vertically,
the model routinely spans gas number densities 10^-5 - 10^2 cm^-3, temperatures
10-10^8 K, local velocities up to 10^3 km s^-1 (with Mach number up to 25).
The thermal structure of the modelled ISM is classified by inspection of the
joint probability density of the gas number density and temperature. We confirm
that most of the complexity can be captured in terms of just three phases,
separated by temperature borderlines at about 10^3 K and 5x10^5 K. The
probability distribution of gas density within each phase is approximately
lognormal. We clarify the connection between the fractional volume of a phase
and its various proxies, and derive an exact relation between the fractional
volume and the filling factors defined in terms of the volume and probabilistic
averages. These results are discussed in both observational and computational
contexts. The correlation scale of the random flows is calculated from the
velocity autocorrelation function; it is of order 100 pc and tends to grow with
distance from the mid-plane. We use two distinct parameterizations of radiative
cooling to show that the multi-phase structure of the gas is robust, as it does
not depend significantly on this choice.Comment: 28 pages, 22 figures and 8 table
Seasonal Variability of Saturn's Tropospheric Temperatures, Winds and Para-H from Cassini Far-IR Spectroscopy
Far-IR 16-1000 m spectra of Saturn's hydrogen-helium continuum measured
by Cassini's Composite Infrared Spectrometer (CIRS) are inverted to construct a
near-continuous record of upper tropospheric (70-700 mbar) temperatures and
para-H fraction as a function of latitude, pressure and time for a third of
a Saturnian year (2004-2014, from northern winter to northern spring). The
thermal field reveals evidence of reversing summertime asymmetries superimposed
onto the belt/zone structure. The temperature structure that is almost
symmetric about the equator by 2014, with seasonal lag times that increase with
depth and are qualitatively consistent with radiative climate models. Localised
heating of the tropospheric hazes (100-250 mbar) create a distinct perturbation
to the temperature profile that shifts in magnitude and location, declining in
the autumn hemisphere and growing in the spring. Changes in the para-H
() distribution are subtle, with a 0.02-0.03 rise over the spring
hemisphere (200-500 mbar) perturbed by (i) low- air advected by both the
springtime storm of 2010 and equatorial upwelling; and (ii) subsidence of
high- air at northern high latitudes, responsible for a developing
north-south asymmetry in . Conversely, the shifting asymmetry in the
para-H disequilibrium primarily reflects the changing temperature structure
(and the equilibrium distribution of ), rather than actual changes in
induced by chemical conversion or transport. CIRS results interpolated to
the same point in the seasonal cycle as re-analysed Voyager-1 observations show
qualitative consistency, with the exception of the tropical tropopause near the
equatorial zones and belts, where downward propagation of a cool temperature
anomaly associated with Saturn's stratospheric oscillation could potentially
perturb tropopause temperatures, para-H and winds. [ABRIDGED]Comment: Preprint accepted for publication in Icarus, 29 pages, 18 figure
Results for the response function determination of the Compact Neutron Spectrometer
The Compact Neutron Spectrometer (CNS) is a Joint European Torus (JET)
Enhancement Project, designed for fusion diagnostics in different plasma
scenarios. The CNS is based on a liquid scintillator (BC501A) which allows good
discrimination between neutron and gamma radiation. Neutron spectrometry with a
BC501A spectrometer requires the use of a reliable, fully characterized
detector. The determination of the response matrix was carried out at the Ion
Accelerator Facility (PIAF) of the Physikalisch-Technische Bundesanstalt (PTB).
This facility provides several monoenergetic beams (2.5, 8, 10, 12 and 14 MeV)
and a 'white field'(Emax ~17 MeV), which allows for a full characterization of
the spectrometer in the region of interest (from ~1.5 MeV to ~17 MeV. The
energy of the incoming neutrons was determined by the time of flight method
(TOF), with time resolution in the order of 1 ns. To check the response matrix,
the measured pulse height spectra were unfolded with the code MAXED and the
resulting energy distributions were compared with those obtained from TOF. The
CNS project required modification of the PTB BC501A spectrometer design, to
replace an analog data acquisition system (NIM modules) with a digital system
developed by the 'Ente per le Nuove tecnologie, l'Energia e l'Ambiente' (ENEA).
Results for the new digital system were evaluated using new software developed
specifically for this project.Comment: Proceedings of FNDA 201
The supernova-regulated ISM. II. The mean magnetic field
The origin and structure of the magnetic fields in the interstellar medium of
spiral galaxies is investigated with 3D, non-ideal, compressible MHD
simulations, including stratification in the galactic gravity field,
differential rotation and radiative cooling. A rectangular domain, 1x1x2
kpc^{3} in size, spans both sides of the galactic mid-plane. Supernova
explosions drive transonic turbulence. A seed magnetic field grows
exponentially to reach a statistically steady state within 1.6 Gyr. Following
Germano (1992) we use volume averaging with a Gaussian kernel to separate
magnetic field into a mean field and fluctuations. Such averaging does not
satisfy all Reynolds rules, yet allows a formulation of mean-field theory. The
mean field thus obtained varies in both space and time. Growth rates differ for
the mean-field and fluctuating field and there is clear scale separation
between the two elements, whose integral scales are about 0.7 kpc and 0.3 kpc,
respectively.Comment: 5 pages, 10 figures, submitted to Monthly Notices Letter
Quantum System Identification by Bayesian Analysis of Noisy Data: Beyond Hamiltonian Tomography
We consider how to characterize the dynamics of a quantum system from a
restricted set of initial states and measurements using Bayesian analysis.
Previous work has shown that Hamiltonian systems can be well estimated from
analysis of noisy data. Here we show how to generalize this approach to systems
with moderate dephasing in the eigenbasis of the Hamiltonian. We illustrate the
process for a range of three-level quantum systems. The results suggest that
the Bayesian estimation of the frequencies and dephasing rates is generally
highly accurate and the main source of errors are errors in the reconstructed
Hamiltonian basis.Comment: 6 pages, 3 figure
- …