3,628 research outputs found
Tensorial characterization and quantum estimation of weakly entangled qubits
In the case of two qubits, standard entanglement monotones like the linear
entropy fail to provide an efficient quantum estimation in the regime of weak
entanglement. In this paper, a more efficient entanglement estimation, by means
of a novel class of entanglement monotones, is proposed. Following an approach
based on the geometric formulation of quantum mechanics, these entanglement
monotones are defined by inner products on invariant tensor fields on bipartite
qubit orbits of the group SU(2)xSU(2).Comment: 23 pages, 3 figure
Introduction to Quantum Mechanics and the Quantum-Classical transition
In this paper we present a survey of the use of differential geometric
formalisms to describe Quantum Mechanics. We analyze Schroedinger and
Heisenberg frameworks from this perspective and discuss how the momentum map
associated to the action of the unitary group on the Hilbert space allows to
relate both approaches. We also study Weyl-Wigner approach to Quantum Mechanics
and discuss the implications of bi-Hamiltonian structures at the quantum level.Comment: Survey paper based on the lectures delivered at the XV International
Workshop on Geometry and Physics Puerto de la Cruz, Tenerife, Canary Islands,
Spain September 11-16, 2006. To appear in Publ. de la RSM
Tensorial dynamics on the space of quantum states
A geometric description of the space of states of a finite-dimensional
quantum system and of the Markovian evolution associated with the
Kossakowski-Lindblad operator is presented. This geometric setting is based on
two composition laws on the space of observables defined by a pair of
contravariant tensor fields. The first one is a Poisson tensor field that
encodes the commutator product and allows us to develop a Hamiltonian
mechanics. The other tensor field is symmetric, encodes the Jordan product and
provides the variances and covariances of measures associated with the
observables. This tensorial formulation of quantum systems is able to describe,
in a natural way, the Markovian dynamical evolution as a vector field on the
space of states. Therefore, it is possible to consider dynamical effects on
non-linear physical quantities, such as entropies, purity and concurrence. In
particular, in this work the tensorial formulation is used to consider the
dynamical evolution of the symmetric and skew-symmetric tensors and to read off
the corresponding limits as giving rise to a contraction of the initial Jordan
and Lie products.Comment: 31 pages, 2 figures. Minor correction
Tangent bundle geometry from dynamics: application to the Kepler problem
In this paper we consider a manifold with a dynamical vector field and
inquire about the possible tangent bundle structures which would turn the
starting vector field into a second order one. The analysis is restricted to
manifolds which are diffeomorphic with affine spaces. In particular, we
consider the problem in connection with conformal vector fields of second order
and apply the procedure to vector fields conformally related with the harmonic
oscillator (f-oscillators) . We select one which covers the vector field
describing the Kepler problem.Comment: 17 pages, 2 figure
Classical Tensors and Quantum Entanglement I: Pure States
The geometrical description of a Hilbert space asociated with a quantum
system considers a Hermitian tensor to describe the scalar inner product of
vectors which are now described by vector fields. The real part of this tensor
represents a flat Riemannian metric tensor while the imaginary part represents
a symplectic two-form. The immersion of classical manifolds in the complex
projective space associated with the Hilbert space allows to pull-back tensor
fields related to previous ones, via the immersion map. This makes available,
on these selected manifolds of states, methods of usual Riemannian and
symplectic geometry. Here we consider these pulled-back tensor fields when the
immersed submanifold contains separable states or entangled states. Geometrical
tensors are shown to encode some properties of these states. These results are
not unrelated with criteria already available in the literature. We explicitly
deal with some of these relations.Comment: 16 pages, 1 figure, to appear in Int. J. Geom. Meth. Mod. Phy
Classical Tensors and Quantum Entanglement II: Mixed States
Invariant operator-valued tensor fields on Lie groups are considered. These
define classical tensor fields on Lie groups by evaluating them on a quantum
state. This particular construction, applied on the local unitary group
U(n)xU(n), may establish a method for the identification of entanglement
monotone candidates by deriving invariant functions from tensors being by
construction invariant under local unitary transformations. In particular, for
n=2, we recover the purity and a concurrence related function (Wootters 1998)
as a sum of inner products of symmetric and anti-symmetric parts of the
considered tensor fields. Moreover, we identify a distinguished entanglement
monotone candidate by using a non-linear realization of the Lie algebra of
SU(2)xSU(2). The functional dependence between the latter quantity and the
concurrence is illustrated for a subclass of mixed states parametrized by two
variables.Comment: 23 pages, 4 figure
Nonextensive thermodynamic functions in the Schr\"odinger-Gibbs ensemble
Schr\"odinger suggested that thermodynamical functions cannot be based on the
gratuitous allegation that quantum-mechanical levels (typically the orthogonal
eigenstates of the Hamiltonian operator) are the only allowed states for a
quantum system [E. Schr\"odinger, Statistical Thermodynamics (Courier Dover,
Mineola, 1967)]. Different authors have interpreted this statement by
introducing density distributions on the space of quantum pure states with
weights obtained as functions of the expectation value of the Hamiltonian of
the system.
In this work we focus on one of the best known of these distributions, and we
prove that, when considered in composite quantum systems, it defines partition
functions that do not factorize as products of partition functions of the
noninteracting subsystems, even in the thermodynamical regime. This implies
that it is not possible to define extensive thermodynamical magnitudes such as
the free energy, the internal energy or the thermodynamic entropy by using
these models. Therefore, we conclude that this distribution inspired by
Schr\"odinger's idea can not be used to construct an appropriate quantum
equilibrium thermodynamics.Comment: 32 pages, revtex 4.1 preprint style, 5 figures. Published version
with several changes with respect to v2 in text and reference
Maintenance policy under multiple unrevealed failures
The unrevealed failures of a system are detected only by inspection. In this work, an inspection policy along with a maintenance procedure for multiunit systems with dependent times to failure is presented. The existence of an optimum policy is also discussed
- …