3,628 research outputs found

    Tensorial characterization and quantum estimation of weakly entangled qubits

    Full text link
    In the case of two qubits, standard entanglement monotones like the linear entropy fail to provide an efficient quantum estimation in the regime of weak entanglement. In this paper, a more efficient entanglement estimation, by means of a novel class of entanglement monotones, is proposed. Following an approach based on the geometric formulation of quantum mechanics, these entanglement monotones are defined by inner products on invariant tensor fields on bipartite qubit orbits of the group SU(2)xSU(2).Comment: 23 pages, 3 figure

    Introduction to Quantum Mechanics and the Quantum-Classical transition

    Full text link
    In this paper we present a survey of the use of differential geometric formalisms to describe Quantum Mechanics. We analyze Schroedinger and Heisenberg frameworks from this perspective and discuss how the momentum map associated to the action of the unitary group on the Hilbert space allows to relate both approaches. We also study Weyl-Wigner approach to Quantum Mechanics and discuss the implications of bi-Hamiltonian structures at the quantum level.Comment: Survey paper based on the lectures delivered at the XV International Workshop on Geometry and Physics Puerto de la Cruz, Tenerife, Canary Islands, Spain September 11-16, 2006. To appear in Publ. de la RSM

    Tensorial dynamics on the space of quantum states

    Full text link
    A geometric description of the space of states of a finite-dimensional quantum system and of the Markovian evolution associated with the Kossakowski-Lindblad operator is presented. This geometric setting is based on two composition laws on the space of observables defined by a pair of contravariant tensor fields. The first one is a Poisson tensor field that encodes the commutator product and allows us to develop a Hamiltonian mechanics. The other tensor field is symmetric, encodes the Jordan product and provides the variances and covariances of measures associated with the observables. This tensorial formulation of quantum systems is able to describe, in a natural way, the Markovian dynamical evolution as a vector field on the space of states. Therefore, it is possible to consider dynamical effects on non-linear physical quantities, such as entropies, purity and concurrence. In particular, in this work the tensorial formulation is used to consider the dynamical evolution of the symmetric and skew-symmetric tensors and to read off the corresponding limits as giving rise to a contraction of the initial Jordan and Lie products.Comment: 31 pages, 2 figures. Minor correction

    Tangent bundle geometry from dynamics: application to the Kepler problem

    Full text link
    In this paper we consider a manifold with a dynamical vector field and inquire about the possible tangent bundle structures which would turn the starting vector field into a second order one. The analysis is restricted to manifolds which are diffeomorphic with affine spaces. In particular, we consider the problem in connection with conformal vector fields of second order and apply the procedure to vector fields conformally related with the harmonic oscillator (f-oscillators) . We select one which covers the vector field describing the Kepler problem.Comment: 17 pages, 2 figure

    Classical Tensors and Quantum Entanglement I: Pure States

    Full text link
    The geometrical description of a Hilbert space asociated with a quantum system considers a Hermitian tensor to describe the scalar inner product of vectors which are now described by vector fields. The real part of this tensor represents a flat Riemannian metric tensor while the imaginary part represents a symplectic two-form. The immersion of classical manifolds in the complex projective space associated with the Hilbert space allows to pull-back tensor fields related to previous ones, via the immersion map. This makes available, on these selected manifolds of states, methods of usual Riemannian and symplectic geometry. Here we consider these pulled-back tensor fields when the immersed submanifold contains separable states or entangled states. Geometrical tensors are shown to encode some properties of these states. These results are not unrelated with criteria already available in the literature. We explicitly deal with some of these relations.Comment: 16 pages, 1 figure, to appear in Int. J. Geom. Meth. Mod. Phy

    Classical Tensors and Quantum Entanglement II: Mixed States

    Full text link
    Invariant operator-valued tensor fields on Lie groups are considered. These define classical tensor fields on Lie groups by evaluating them on a quantum state. This particular construction, applied on the local unitary group U(n)xU(n), may establish a method for the identification of entanglement monotone candidates by deriving invariant functions from tensors being by construction invariant under local unitary transformations. In particular, for n=2, we recover the purity and a concurrence related function (Wootters 1998) as a sum of inner products of symmetric and anti-symmetric parts of the considered tensor fields. Moreover, we identify a distinguished entanglement monotone candidate by using a non-linear realization of the Lie algebra of SU(2)xSU(2). The functional dependence between the latter quantity and the concurrence is illustrated for a subclass of mixed states parametrized by two variables.Comment: 23 pages, 4 figure

    Nonextensive thermodynamic functions in the Schr\"odinger-Gibbs ensemble

    Get PDF
    Schr\"odinger suggested that thermodynamical functions cannot be based on the gratuitous allegation that quantum-mechanical levels (typically the orthogonal eigenstates of the Hamiltonian operator) are the only allowed states for a quantum system [E. Schr\"odinger, Statistical Thermodynamics (Courier Dover, Mineola, 1967)]. Different authors have interpreted this statement by introducing density distributions on the space of quantum pure states with weights obtained as functions of the expectation value of the Hamiltonian of the system. In this work we focus on one of the best known of these distributions, and we prove that, when considered in composite quantum systems, it defines partition functions that do not factorize as products of partition functions of the noninteracting subsystems, even in the thermodynamical regime. This implies that it is not possible to define extensive thermodynamical magnitudes such as the free energy, the internal energy or the thermodynamic entropy by using these models. Therefore, we conclude that this distribution inspired by Schr\"odinger's idea can not be used to construct an appropriate quantum equilibrium thermodynamics.Comment: 32 pages, revtex 4.1 preprint style, 5 figures. Published version with several changes with respect to v2 in text and reference

    Maintenance policy under multiple unrevealed failures

    Get PDF
    The unrevealed failures of a system are detected only by inspection. In this work, an inspection policy along with a maintenance procedure for multiunit systems with dependent times to failure is presented. The existence of an optimum policy is also discussed
    • …
    corecore