140 research outputs found

    Thallium under extreme compression

    Full text link
    We present a combined theoretical and experimental study of the high-pressure behavior of thallium. X-ray diffraction experiments have been carried out at room temperature up to 125 GPa using diamond-anvil cells, nearly doubling the pressure range of previous experiments. We have confirmed the hcp-fcc transition at 3.5 GPa and determined that the fcc structure remains stable up to the highest pressure attained in the experiments. In addition, HP-HT experiments have been performed up to 8 GPa and 700 K by using a combination of x-ray diffraction and a resistively heated diamond-anvil cell. Information on the phase boundaries is obtained, as well as crystallographic information on the HT bcc phase. The equation of state for different phases is reported. Ab initio calculations have also been carried out considering several potential high-pressure structures. They are consistent with the experimental results and predict that, among the structures considered in the calculations, the fcc structure of thallium is stable up to 4.3 TPa. Calculations also predict the post-fcc phase to have a close-packed orthorhombic structure above 4.3 TPa.Comment: 29 pages, 14 figure

    X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram

    Get PDF
    In this paper, we report angle-dispersive X-ray diffraction data of molybdenum melting, measured in a double-sided laser-heated diamond-anvil cell up to a pressure of 119 GPa and temperatures up to 3400 K. The new melting temperatures are in excellent agreement with earlier measurements up to 90 GPa that relied on optical observations of melting and in strong contrast to most theoretical estimates. The X-ray measurements show that the solid melts from the bcc structure throughout the reported pressure range and provide no evidence for a high temperature transition from bcc to a close-packed structure, or to any other crystalline structure. This observation contradicts earlier interpretations of shock data arguing for such a transition. Instead, the values for the Poisson ratios of shock compressed Mo, obtained from the sound speed measurements, and the present X-ray evidence of loss of long-range order suggest that the 210 GPa ( ∼ 4100 K) transition in the shock experiment is from the bcc structure to a new, highly viscous, structured [email protected]

    Zero-temperature generalized phase diagram of the 4d transition metals under pressure

    Full text link
    We use an accurate implementation of density functional theory (DFT) to calculate the zero-temperature generalized phase diagram of the 4dd series of transition metals from Y to Pd as a function of pressure PP and atomic number ZZ. The implementation used is full-potential linearized augmented plane waves (FP-LAPW), and we employ the exchange-correlation functional recently developed by Wu and Cohen. For each element, we obtain the ground-state energy for several crystal structures over a range of volumes, the energy being converged with respect to all technical parameters to within 1\sim 1 meV/atom. The calculated transition pressures for all the elements and all transitions we have found are compared with experiment wherever possible, and we discuss the origin of the significant discrepancies. Agreement with experiment for the zero-temperature equation of state is generally excellent. The generalized phase diagram of the 4dd series shows that the major boundaries slope towards lower ZZ with increasing PP for the early elements, as expected from the pressure induced transfer of electrons from spsp states to dd states, but are almost independent of PP for the later elements. Our results for Mo indicate a transition from bcc to fcc, rather than the bcc-hcp transition expected from spsp-dd transfer.Comment: 28 pages and 10 figures. Submitted to Phys. Rev.

    Zircon to monazite phase transition in CeVO4

    Full text link
    X-ray diffraction and Raman-scattering measurements on cerium vanadate have been performed up to 12 and 16 GPa, respectively. Experiments reveal that at 5.3 GPa the onset of a pressure-induced irreversible phase transition from the zircon to the monazite structure. Beyond this pressure, diffraction peaks and Raman-active modes of the monazite phase are measured. The zircon to monazite transition in CeVO4 is distinctive among the other rare-earth orthovanadates. We also observed softening of external translational Eg and internal B2g bending modes. We attributed it to mechanical instabilities of zircon phase against the pressure-induced distortion. We additionally report lattice-dynamical and total-energy calculations which are in agreement with the experimental results. Finally, the effect of non-hydrostatic stresses on the structural sequence is studied and the equations of state of different phases are reported.Comment: 45 pages, 8 figures, 8 table

    First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties

    Full text link
    Solid-solution strengthening results from solutes impeding the glide of dislocations. Existing theories of strength rely on solute-dislocation interactions, but do not consider dislocation core structures, which need an accurate treatment of chemical bonding. Here, we focus on strengthening of Mg, the lightest of all structural metals and a promising replacement for heavier steel and aluminum alloys. Elasticity theory, which is commonly used to predict the requisite solute-dislocation interaction energetics, is replaced with quantum-mechanical first-principles calculations to construct a predictive mesoscale model for solute strengthening of Mg. Results for 29 different solutes are displayed in a "strengthening design map" as a function of solute misfits that quantify volumetric strain and slip effects. Our strengthening model is validated with available experimental data for several solutes, including Al and Zn, the two most common solutes in Mg. These new results highlight the ability of quantum-mechanical first-principles calculations to predict complex material properties such as strength.Comment: 9 pages, 7 figures, 2 table

    Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell

    Full text link
    The high pressure and high temperature phase diagram of Ta has been studied in a laser-heated diamond-anvil cell (DAC) using x-ray diffraction measurements up to 52 GPa and 3800 K. The melting was observed at nine different pressures, being the melting temperature in good agreement with previous laser-heated DAC experiments, but in contradiction with several theoretical calculations and previous piston-cylinder apparatus experiments. A small slope for the melting curve of Ta is estimated (dTm/dP = 24 K/GPa at 1 bar) and a possible explanation for this behaviour is given. Finally, a P-V-T equation of states is obtained, being the temperature dependence of the thermal expansion coefficient and the bulk modulus estimated.Comment: 31 pages, 8 figures, to appear in J.Phys.:Cond.Matte

    High-pressure x-ray diffraction study on the structure and phase transitions of the defect-stannite ZnGa2Se4 and defect-chalcopyrite CdGa2S4

    Full text link
    X-ray diffraction measurements on the sphalerite-derivatives ZnGa2Se4 and CdGa2S4 have been performed upon compression up to 23 GPa in a diamond-anvil cell. ZnGa2Se4 exhibits a defect tetragonal stannite-type structure (I-42m) up to 15.5 GPa and in the range from 15.5 GPa to 18.5 GPa the low-pressure phase coexists with a high-pressure phase, which remains stable up to 23 GPa. In CdGa2S4, we find the defect tetragonal chalcopyrite-type structure (I-4) is stable up to 17 GPa. Beyond this pressure a pressure-induced phase transition takes place. In both materials, the high-pressure phase has been characterized as a defect-cubic NaCl-type structure (Fm-3m). The occurrence of the pressure induced phase transitions is apparently related with an increase of the cation disorder on the semiconductors investigated. In addition, the results allow the evaluation of the axial compressibility and the determination of the equation of state for each compound. The obtained results are compared with those previously reported for isomorphic digallium sellenides. Finally, a systematic study of the pressure-induced phase transition in twenty-three different sphalerite-related ABX2 and AB2X4 compounds indicates that the transition pressure increases as the ratio of the cationic radii and anionic radii of the compounds increases.Comment: 34 pages, 3 tables, 6 figure
    corecore