857 research outputs found

    Soft random solids and their heterogeneous elasticity

    Get PDF
    Spatial heterogeneity in the elastic properties of soft random solids is examined via vulcanization theory. The spatial heterogeneity in the \emph{structure} of soft random solids is a result of the fluctuations locked-in at their synthesis, which also brings heterogeneity in their \emph{elastic properties}. Vulcanization theory studies semi-microscopic models of random-solid-forming systems, and applies replica field theory to deal with their quenched disorder and thermal fluctuations. The elastic deformations of soft random solids are argued to be described by the Goldstone sector of fluctuations contained in vulcanization theory, associated with a subtle form of spontaneous symmetry breaking that is associated with the liquid-to-random-solid transition. The resulting free energy of this Goldstone sector can be reinterpreted as arising from a phenomenological description of an elastic medium with quenched disorder. Through this comparison, we arrive at the statistics of the quenched disorder of the elasticity of soft random solids, in terms of residual stress and Lam\'e-coefficient fields. In particular, there are large residual stresses in the equilibrium reference state, and the disorder correlators involving the residual stress are found to be long-ranged and governed by a universal parameter that also gives the mean shear modulus.Comment: 40 pages, 7 figure

    Spectral Statistics of Erd{\H o}s-R\'enyi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues

    Full text link
    We consider the ensemble of adjacency matrices of Erd{\H o}s-R\'enyi random graphs, i.e.\ graphs on NN vertices where every edge is chosen independently and with probability pp(N)p \equiv p(N). We rescale the matrix so that its bulk eigenvalues are of order one. Under the assumption pNN2/3p N \gg N^{2/3}, we prove the universality of eigenvalue distributions both in the bulk and at the edge of the spectrum. More precisely, we prove (1) that the eigenvalue spacing of the Erd{\H o}s-R\'enyi graph in the bulk of the spectrum has the same distribution as that of the Gaussian orthogonal ensemble; and (2) that the second largest eigenvalue of the Erd{\H o}s-R\'enyi graph has the same distribution as the largest eigenvalue of the Gaussian orthogonal ensemble. As an application of our method, we prove the bulk universality of generalized Wigner matrices under the assumption that the matrix entries have at least 4+ϵ4 + \epsilon moments

    Growth of graph states in quantum networks

    Full text link
    We propose a scheme to distribute graph states over quantum networks in the presence of noise in the channels and in the operations. The protocol can be implemented efficiently for large graph sates of arbitrary (complex) topology. We benchmark our scheme with two protocols where each connected component is prepared in a node belonging to the component and subsequently distributed via quantum repeaters to the remaining connected nodes. We show that the fidelity of the generated graphs can be written as the partition function of a classical Ising-type Hamiltonian. We give exact expressions of the fidelity of the linear cluster and results for its decay rate in random graphs with arbitrary (uncorrelated) degree distributions.Comment: 16 pages, 7 figure

    Graph realizations constrained by skeleton graphs

    Get PDF
    In 2008 Amanatidis, Green and Mihail introduced the Joint Degree Matrix (JDM) model to capture the fundamental difference in assortativity of networks in nature studied by the physical and life sciences and social networks studied in the social sciences. In 2014 Czabarka proposed a direct generalization of the JDM model, the Partition Adjacency Matrix (PAM) model. In the PAM model the vertices have specified degrees, and the vertex set itself is partitioned into classes. For each pair of vertex classes the number of edges between the classes in a graph realization is prescribed. In this paper we apply the new {\em skeleton graph} model to describe the same information as the PAM model. Our model is more convenient for handling problems with low number of partition classes or with special topological restrictions among the classes. We investigate two particular cases in detail: (i) when there are only two vertex classes and (ii) when the skeleton graph contains at most one cycle.Comment: 19 page

    Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model

    Full text link
    We consider Hermitian and symmetric random band matrices HH in d1d \geq 1 dimensions. The matrix elements HxyH_{xy}, indexed by x,yΛZdx,y \in \Lambda \subset \Z^d, are independent, uniformly distributed random variables if \abs{x-y} is less than the band width WW, and zero otherwise. We prove that the time evolution of a quantum particle subject to the Hamiltonian HH is diffusive on time scales tWd/3t\ll W^{d/3}. We also show that the localization length of an arbitrarily large majority of the eigenvectors is larger than a factor Wd/6W^{d/6} times the band width. All results are uniform in the size \abs{\Lambda} of the matrix.Comment: Minor corrections, Sections 4 and 11 update

    The history of degenerate (bipartite) extremal graph problems

    Full text link
    This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version of our survey presented in Erdos 100. In this version 2 only a citation was complete

    The early evolution of the H-free process

    Full text link
    The H-free process, for some fixed graph H, is the random graph process defined by starting with an empty graph on n vertices and then adding edges one at a time, chosen uniformly at random subject to the constraint that no H subgraph is formed. Let G be the random maximal H-free graph obtained at the end of the process. When H is strictly 2-balanced, we show that for some c>0, with high probability as nn \to \infty, the minimum degree in G is at least cn1(vH2)/(eH1)(logn)1/(eH1)cn^{1-(v_H-2)/(e_H-1)}(\log n)^{1/(e_H-1)}. This gives new lower bounds for the Tur\'an numbers of certain bipartite graphs, such as the complete bipartite graphs Kr,rK_{r,r} with r5r \ge 5. When H is a complete graph KsK_s with s5s \ge 5 we show that for some C>0, with high probability the independence number of G is at most Cn2/(s+1)(logn)11/(eH1)Cn^{2/(s+1)}(\log n)^{1-1/(e_H-1)}. This gives new lower bounds for Ramsey numbers R(s,t) for fixed s5s \ge 5 and t large. We also obtain new bounds for the independence number of G for other graphs H, including the case when H is a cycle. Our proofs use the differential equations method for random graph processes to analyse the evolution of the process, and give further information about the structure of the graphs obtained, including asymptotic formulae for a broad class of subgraph extension variables.Comment: 36 page

    Network growth model with intrinsic vertex fitness

    Get PDF
    © 2013 American Physical SocietyWe study a class of network growth models with attachment rules governed by intrinsic node fitness. Both the individual node degree distribution and the degree correlation properties of the network are obtained as functions of the network growth rules. We also find analytical solutions to the inverse, design, problems of matching the growth rules to the required (e.g., power-law) node degree distribution and more generally to the required degree correlation function. We find that the design problems do not always have solutions. Among the specific conditions on the existence of solutions to the design problems is the requirement that the node degree distribution has to be broader than a certain threshold and the fact that factorizability of the correlation functions requires singular distributions of the node fitnesses. More generally, the restrictions on the input distributions and correlations that ensure solvability of the design problems are expressed in terms of the analytical properties of their generating functions

    Statistics of Cycles: How Loopy is your Network?

    Full text link
    We study the distribution of cycles of length h in large networks (of size N>>1) and find it to be an excellent ergodic estimator, even in the extreme inhomogeneous case of scale-free networks. The distribution is sharply peaked around a characteristic cycle length, h* ~ N^a. Our results suggest that h* and the exponent a might usefully characterize broad families of networks. In addition to an exact counting of cycles in hierarchical nets, we present a Monte-Carlo sampling algorithm for approximately locating h* and reliably determining a. Our empirical results indicate that for small random scale-free nets of degree exponent g, a=1/(g-1), and a grows as the nets become larger.Comment: Further work presented and conclusions revised, following referee report

    Kinetic Limit for Wave Propagation in a Random Medium

    Full text link
    We study crystal dynamics in the harmonic approximation. The atomic masses are weakly disordered, in the sense that their deviation from uniformity is of order epsilon^(1/2). The dispersion relation is assumed to be a Morse function and to suppress crossed recollisions. We then prove that in the limit epsilon to 0 the disorder averaged Wigner function on the kinetic scale, time and space of order epsilon^(-1), is governed by a linear Boltzmann equation.Comment: 71 pages, 3 figure
    corecore