1,252 research outputs found

    Quantum transport in semiconductor quantum dot superlattices: electron-phonon resonances and polaron effects

    Full text link
    Electron transport in periodic quantum dot arrays in the presence of interactions with phonons was investigated using the formalism of nonequilibrium Green's functions. The self-consistent Born approximation was used to model the self-energies. Its validity was checked by comparison with the results obtained by direct diagonalization of the Hamiltonian of interacting electrons and longitudinal optical phonons. The nature of charge transport at electron -- phonon resonances was investigated in detail and contributions from scattering and coherent tunnelling to the current were identified. It was found that at larger values of the structure period the main peak in the current -- field characteristics exhibits a doublet structure which was shown to be a transport signature of polaron effects. At smaller values of the period, electron -- phonon resonances cause multiple peaks in the characteristics. A phenomenological model for treatment of nonuniformities of a realistic quantum dot ensemble was also introduced to estimate the influence of nonuniformities on current -- field characteristics

    Depolarization channels with zero-bandwidth noises

    Full text link
    A simple model describing depolarization channels with zero-bandwidth environment is presented and exactly solved. The environment is modelled by Lorentzian, telegraphic and Gaussian zero-bandwidth noises. Such channels can go beyond the standard Markov dynamics and therefore can illustrate the influence of memory effects of the noisy communication channel on the transmitted information. To quantify the disturbance of quantum states the entanglement fidelity between arbitrary input and output states is investigated.Comment: 15 pages, 3 figure

    Electron beam induced damage in PECVD Si3N4 and SiO2 films on InP

    Get PDF
    Phosphorus rich plasma enhanced chemical vapor deposition (PECVD) of silicon nitride and silicon dioxide films on n-type indium phosphide (InP) substrates were exposed to electron beam irradiation in the 5 to 40 keV range for the purpose of characterizing the damage induced in the dielectic. The electron beam exposure was on the range of 10(exp -7) to 10(exp -3) C/sq cm. The damage to the devices was characterized by capacitance-voltage (C-V) measurements of the metal insulator semiconductor (MIS) capacitors. These results were compared to results obtained for radiation damage of thermal silicon dioxide on silicon (Si) MOS capacitors with similar exposures. The radiation induced damage in the PECVD silicon nitride films on InP was successfully annealed out in an hydrogen/nitrogen (H2/N2) ambient at 400 C for 15 min. The PECVD silicon dioxide films on InP had the least radiation damage, while the thermal silicon dioxide films on Si had the most radiation damage

    Leak Detection and Localization through Demand Components Calibration

    Get PDF
    Success in the application of any model-based methodology (e.g., design, control, supervision) highly depends on the availability of a well-calibrated model. The calibration of water distribution networks needs to be performed online due to the continuous evolution of demands. During the calibration process, background leakages or bursts can be unintentionally incorporated to the demand model and treated as a system evolution (change in demands). This work proposes a leak-detection and localization approach to be coupled with a calibration methodology that identifies geographically distributed parameters. The approach proposed consists in comparing the calibrated parameters with their historical values to assess if changes in these parameters are caused by a system evolution or by the effect of leakage. The geographical distribution allows unexpected behavior of the calibrated parameters (e.g., abrupt changes, trends, etc.) to be associated with a specific zone in the network. The performance of the methodology proposed is tested on a real water distribution network using synthetic data. Tested scenarios include leaks occurring at different locations and ranging from 2.5 to 13% of the total consumption. Leakage is represented as pressure-dependent demand simulated as emitter flows at the network nodes. Results show that even considering a low number of sensors, leaks with an effect on parameters higher than the parameters’ uncertainty can be correctly detected and located within 200 m.FP7 - ICT - 2012 - 318556 (EFFINET)European CommissionPolytechnic University of Cataloni

    Multi-stage linear programming optimization for pump scheduling

    Get PDF
    Open Access journalCopyright © 2013 The Authors. Published by Elsevier Ltd.12th International Conference on Computing and Control for the Water Industry, CCWI2013This study presents a methodology based on Linear Programming for determining the optimal pump schedule on a 24-hour basis, considering as decision variables the continuous pump flow rates which are subsequently transformed into a discrete schedule. The methodology was applied on a case study derived from the benchmark Anytown network. To evaluate the LP reliability, a comparison was made with solutions generated by a Hybrid Discrete Dynamically Dimensioned Search (HD-DDS) algorithm. The cost associated with the result derived from the LP initial solution was shown to be lower than that obtained with repeated HD-DDS runs with differing random seeds

    The imprints of primordial non-gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects

    Full text link
    We study the effect of primordial nongaussianity on large-scale structure, focusing upon the most massive virialized objects. Using analytic arguments and N-body simulations, we calculate the mass function and clustering of dark matter halos across a range of redshifts and levels of nongaussianity. We propose a simple fitting function for the mass function valid across the entire range of our simulations. We find pronounced effects of nongaussianity on the clustering of dark matter halos, leading to strongly scale-dependent bias. This suggests that the large-scale clustering of rare objects may provide a sensitive probe of primordial nongaussianity. We very roughly estimate that upcoming surveys can constrain nongaussianity at the level |fNL| <~ 10, competitive with forecasted constraints from the microwave background.Comment: 16 pages, color figures, revtex4. v2: added references and an equation. submitted to PRD. v3: simplified derivation, additional reference

    Dark energy, antimatter gravity and geometry of the Universe

    Full text link
    This article is based on two hypotheses. The first one is the existence of the gravitational repulsion between particles and antiparticles. Consequently, virtual particle-antiparticle pairs in the quantum vacuum may be considered as gravitational dipoles. The second hypothesis is that the Universe has geometry of a four-dimensional hyper-spherical shell with thickness equal to the Compton wavelength of a pion, which is a simple generalization of the usual geometry of a 3-hypersphere. It is striking that these two hypotheses lead to a simple relation for the gravitational mass density of the vacuum, which is in very good agreement with the observed dark energy density
    corecore