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Gerard Sanz1, Ramon Pérez2, Zoran Kapelan3 and Dragan Savic43

ABSTRACT4

The success in the application of any model-based methodology (e.g. design, control,5

supervision) highly depends on the availability of a well calibrated model. The calibration6

in water distribution networks needs to be performed online due to the continuous evolution7

of demands. During the calibration process, background leakages or bursts can be unin-8

tentionally incorporated to the demand model and treated as a system evolution (change9

in demands). This work proposes a leak detection and localization approach to be coupled10

with a calibration methodology that identifies geographically distributed parameters. The11

approach proposed consists in comparing the calibrated parameters with their historical val-12

ues to assess if changes in these parameters are caused by a system evolution or by the13

effect of leakage. The geographical distribution allows to associate an unexpected behaviour14

of the calibrated parameters (e.g. abrupt changes, trends, etc.) to a specific zone in the15

network. The performance of the methodology proposed is tested on a real water distri-16

bution network using synthetic data. Tested scenarios include leaks occurring at different17

locations and ranging from 2.5% to 13% of the total consumption. Leakage is represented as18

pressure-dependent demand simulated as emitter flows at the network nodes. Results show19

that even considering a low number of sensors, leaks with an effect on parameters higher20
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than the parameters’ uncertainty can be correctly detected and located within 200 metres.21

Keywords: Water Distribution Networks, Leak Detection and Localization, Calibration,22

Demands.23

INTRODUCTION24

Waste and loss of water have been sometimes disregarded due to the low water price and25

ease of exploitation in developed countries. However, both users and utilities are increasing26

their concern to avoid present and future water scarcity. Individual users can optimise their27

daily routines to reduce water waste, but burst and background leakage will be present28

independently of it.29

Leakage in water distribution systems has attracted a lot of attention by both practi-30

tioners and researchers over the past years. (Puust et al. 2010) provides a review of leakage31

management related methods in distribution pipe systems from detection and assessment to32

efficient control. Leakage identification is divided into leakage awareness and leakage local-33

ization (Puust et al. 2010). Leakage awareness focuses on leakage detection in the network34

[(Kapelan et al. 2003); (Mounce et al. 2010); (Mounce et al. 2011); (Palau et al. 2012);35

(Romano et al. 2014)], but does not give any information about its precise location. On36

the other hand, leakage localization (Romano et al. 2013) is an activity that identifies and37

prioritises the areas of leakage to make pinpointing of leaks easier. Leak localization tech-38

niques can be divided into two categories: external and internal (ADEC 2000). The use of39

external methods like acoustic logging (Pilcher 2007), penetrating radar (Hugenschmidt and40

Kalogeropoulos 2009) or liquid detection methods (Henault et al. 2010) has some drawbacks41

like needing a large number of sensors, not being suitable for application in large urban areas,42

or being invasive. Internal methods use continuously monitored data to infer the position of43

leaks using models. Many techniques can be found in literature [(Liggett and Chen 1994);44

(Vı́tkovský et al. 2000); (Kim 2005); (Colombo et al. 2009)]. All of these techniques are based45

on transient analysis, which is mainly used on single, grounded pipelines due to the high46

effect of the system uncertainty on results. Non-transient model-based leakage localization47
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techniques have been also developed during the last years [(Wu and Sage 2006); (Pérez et al.48

2011); (Wu et al. 2010); (Farley et al. 2011); (Goulet et al. 2013); (Pérez et al. 2014)]. These49

techniques analyse the difference between measurements and estimated values from leaky50

scenarios to signal the probability of a zone to contain leakage. Some of these model-based51

methodologies assume the hypothesis of a single leak in the network [(Goulet et al. 2013);52

(Pérez et al. 2014)]. Wu et al. (2010) calibrated leakage as a pressure driven demand using53

the competent genetic algorithm, providing a tool for assisting leakage detection engineers54

to predict leakage hotspots. Walski et al. (2014) provide some practical suggestions to help55

users collect the right quality and quantity of data and interpret the results when running56

genetic algorithms to locate leaks and incorrectly closed valves. Wu and Song (2012) have57

developed an efficient method to effectively locate the known valves and identify not only58

their status but also the settings.59

The use of models for monitoring and supervising water distribution networks (WDN)60

is a common practice in water companies. A good calibration of these models is required61

to obtain reliable results when using them (Sumer and Lansey 2009). Savic et al. (2009)62

thoroughly reviewed the state of the art of the global calibration problem. Generally, the63

inverse problem has to be solved using field measurements to adjust the network parameters.64

Least squares (Kang and Lansey 2011) and evolutionary methods (Maier et al. 2014) are the65

most used techniques to calibrate WDN models.66

Once the model is calibrated, the model-based leak detection and localization methodolo-67

gies reviewed can make use of it. However, these methodologies do not consider the evolution68

of demands in the real system. This evolution should be taken into account because demands69

are parameters that change continuously and leakages may be masked with their evolution.70

This work presents a leak detection and localization approach coupled with a Least71

Squares (LS) based calibration method with geographically allocated demand parameters.72

The main objective is to diagnose if the updates in the demand model during the continuous73

calibration correspond to the evolution of demands or to leakage. If leakage is detected, the74
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geographical distribution of parameters allows to identify a particular zone of the network75

where leakage is most likely located. This leakage can be a burst or any event that induce76

similar abnormal pressure/flow variations at the district metered area (DMA) level.77

PROBLEM STATEMENT78

Goulet et al. (2013) assessed that the most important uncertainty sources are demands79

and model simplifications, but uncertainty also originates from measurement errors, incorrect80

boundary conditions, inherent model structural errors or unknown status of valves [(Hutton81

et al. 2014), (Walski et al. 2014)]. The calibration in this work focuses on demands due to82

their daily variability and continuous evolution depending generally on social and climate83

factors comparing to the more stable evolution of roughness. Leakage is considered but not84

calibrated separately. Therefore, changes in demands have to be analysed to determine the85

presence of leakage.86

Nodes in WDN models represent an aggregation of multiple demands. Each of these87

demands may be of different type, e.g. domestic, commercial, etc. Users of the same type88

are usually assumed to consume water in the same (i.e. similar) way, following a certain,89

usually pre-determined diurnal demand pattern. The consumption of each user is then90

computed by multiplying the pattern coefficients with the baseline (i.e. average) demand.91

Once this is done, demands of different type that are associated with a certain network node92

are aggregated resulting in the total nodal consumption at given point in time.93

However, the information on different types of users associated with a given network node94

and their diurnal patterns and baseline demands is not always available in practice. Quite95

often, the only information available is the consumption aggregated during a period of time96

(usually monthly or quarterly). This low temporal resolution information on demands can97

still be used to compute the base demand of each consumer. The base demand of a node98

is computed from the sum of the base demands of consumers aggregated in this node. The99

basic model presented in Eq. 1 uses the nodal base demands, together with the total network100

consumption metered at the network inputs, to calculate the demand of each node at each101
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sample.102

di(t) =
bdi∑nd

j=1 bdj
· qin(t) (1)103

Where bdi is the base demand of node i, nd is the number of nodes in the network, and104

qin(t) is the total network consumption metered at sample t.105

The demand model presented in Eq. 1 cannot explain the daily variation of the relative106

pressure behaviour between two areas in the network. The demand model in Eq. 2 presents107

a new approach to model demands depending on their geographical location.108

di(t) =
bdi∑nd

j=1 bdj
cj→i(t) · qin(t) (2)109

Where cj→i(t) is the value of the demand component j associated to node i depending110

on the node location. Demand components are calibrated demand multipliers that represent111

the behaviour of nodes in a determined geographical zone, avoiding the dependency on112

information of the user type and diurnal pattern behaviour. All nodes in the same area of113

node i have the same associated demand component. Consequently, all nodes in the same114

zone will have the same demand behaviour, weighted depending on their base demand. This115

demand model is capable of generating pressure variations in different zones of the network,116

as it happens in a real situation. However, the assumption that all nodes in the same area117

behave exactly in the same way is not realistic. For example, a node in the limit of the118

effect zone of two demand components should probably have a combination of the behaviour119

of the two demand components, instead of only one. To solve that, we can redefine the120

demand model in Eq. 2 so that the level to which each demand component is associated121

with each node is given as a membership, which depends on their geographical location.122

Eq. 3 represents the new demand model:123

di(t) =
bdi∑nd

j=1 bdj
· qin(t) · (αi,1 · c1(t) + αi,2 · c2(t) + · · ·+ αi,nc · cnc(t)) (3)124
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with

αi,1 + αi,2 + · · ·+ αi,nc = 1 ∀i

Where αi,j is the association of demand component j with node i, and nc is the number125

of demand components. The membership of each node to each demand component depends126

on the geographical location of the node, and is computed by means of a sensitivity analysis127

detailed in (Sanz and Pérez 2015). The model in Eq. 3 is capable of generating different128

behaviours in every demand, while only having to calibrate few (nc) demand components.129

Sanz and Pérez (2015) presents the demand component calibration process using a LS-130

based procedure. At each sample, demand components values are estimated so that the errors131

in predicted measurements are minimized. This way of calibrating demands incorporates132

the usually ignored fact that demands depend in some ways of head status of the network133

(Giustolisi and Walski 2012). For example, if the pressure in a specific zone of the DMA134

decreases, the calibration process will estimate demand component values that decrease the135

consumption of nodes in that zone. Demand components presented in this work should136

not be confused with the ones in (Giustolisi and Walski 2012), where demand components137

were generated with a previous knowledge of the use of water (human-based, volume-based,138

non-controlled orifice-based, leakage-based).139

The calibrated demand components generate individual demands that may not be exactly140

as the real ones, but the aggregated demand in a zone at a specific sample, and the cumulative141

demand of each individual node during a period of time (similar to the billing) will coincide142

with the real ones if other parameters (roughness, valve status, etc.) are well calibrated.143

Fig. 1 presents a network where three demand components have been defined as explained144

in (Sanz and Pérez 2015). The first component is located on the North-West side of the145

DMA; the second component is located on the South-West of the DMA; and the third146

component is located on the East side of the network. The memberships are depicted in147

greyscale: the darker the colour of a node, the higher the membership of that node to the148

demand component. Tab. 1 presents the memberships of the two nodes highlighted in Fig. 1.149
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Demand of node A is affected (60%) by the value of demand component 1, while component150

3 has a lower (35%) effect on it. On the other hand, demand of node B is completely (99%)151

affected by demand component 3. Demand component 2 does not have any effect on both152

demands, as it is far (geographically and hydraulically) from the two example nodes.153

A comparison of the calibration results between type of user-based demand patterns and154

pressure sensitivity-based demand components is presented in (Sanz and Pérez 2014), with155

better results for the latter: the uncertainty in the calibrated parameters is reduced, while156

the geographical distribution is useful for applications requiring parameters to be related157

with zones of the network. Sanz and Pérez (2015) present the methodology to select the158

sensors that have high sensitivity to one demand component while being low sensitive to the159

rest.160

Not considering leakage estimation in the online calibration process leads to the inclusion161

of possible losses in the calibrated demand model. Therefore, the key factor is to distinguish162

whether the evolution of calibrated demands is true or hides leakage. The demand model163

presented in Eq. 3 allows to detect and locate leaks straightforwardly through calibration164

due to the geographical distribution of the calibrated parameters.165

This work considers the following assumptions:166

• A maximum of one leak appears in the network.167

• Pressures and flows at the network inputs are known.168

• A set of pressures measurements within the DMA is available.169

• Noise is considered in the measurements.170

• Quarterly billing for each individual consumer is known.171

• The methodology is applied to a real network with synthetic data where uncertainty172

in demands is considered.173

• Gross errors in field data and model are considered to be corrected at a prior stage.174

• Sudden weather changes or other special events that may produce relevant demand175

variations are not considered.176
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• Status of valves in the DMA have been checked as part of the prior calibration process.177

METHODOLOGY178

Fig. 2 presents the structure of the coupled calibration and leak detection and localization179

methodologies. Measurements taken from the real network are introduced via the SCADA180

system, where a validation process is performed first. The calibration process estimates181

every hour the set of current demand components cc that minimise the errors in model182

predictions. This set of calibrated demand components is stored into a database, where it183

is concatenated to previous hours and days. Simultaneously, the detection process com-184

pares the sets of calibrated and historical demand components. Assuming that consumers’185

habits do not change significantly from one week to another, a demand component value186

cci is expected to be similar to the corresponding value in the previous week chi (historical187

component). At time t, the last wd values of each component cci are compared with the188

same time window of chi using detection indicators, where wd is the number of samples to be189

compared (e.g. if wd = 24, 24 hours of cci will be compared with the same 24 hours of chi ). If190

detection indicators do not trigger the detection alarm, the state of the network is classified191

as non-faulty, and the historical demand components values are updated with the currently192

calibrated ones (model update process). The new demand components include slight193

changes in demands due to the evolution of the system. On the contrary, if the detection194

alarm is triggered, the leak localization process starts. The week-to-week comparison is195

useful not only for the similarity of the compared days, but also to avoid false alarms from196

progressive changes due to seasonal habits in population.197

The calibration process included in Fig. 2 is described in (Sanz and Pérez 2015). The198

current work focuses on the description of the detection and localization processes.199

Detection indicators200

Six detection indicators are defined to evaluate the similarity or dissimilarity between201

calibrated and historical demand components: Pearson correlation, conditional overlapping,202
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unit norm, relative increment in mean component values and consumption, and relative203

residual coefficient. A description of each indicator is listed next:204

• The Pearson correlation is a measure of the linear dependence between the two com-205

ponents cci and chi .206

ρi(t) =

∑t
k=t−wd+1[(c

c
i(k)− c̄ci)(chi (k)− c̄hi )]√∑t

k=t−wd+1(c
c
i(k)− c̄ci)2 ·

∑t
k=t−wd+1(c

h
i (k)− c̄hi )2

(4)207

where cci comprises times from t− wd+ 1 to t, and chi comprises the same times but208

corresponding to the previous week; and t is a specific point in time where calibrated209

components are available. Correlations close to 1 indicate a high similarity between210

components.211

• The overlapping coefficient measures the overlap between two discrete or continuous212

probability density functions (pdf).213

oi(k) =

∫ ∞
−∞

min(fi(x), gi(x)) dx (5)214

where fi(x) is the pdf of the current calibrated component at sample k; and gi(x) is215

the pdf of the historical component at the same sample of the previous week. The216

mean overlapping ōi during a time window is calculated as seen in Eq. 6.217

ōi(t) =
1

wd

t∑
k=t−wd+1

oi(k) (6)218

A 100% overlap is obtained with equal probability distributions. As the pdfs become219

different, the overlapping decreases. A new indicator called conditional overlapping220

coefficient can be defined considering only the reduction of overlapping coefficients221
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due to positive component changes (increase in consumed water).222

coi(t) =


ōi(t) c̄ci > c̄hi

100% otherwise

(7)223

• Norms are functions that assign a strictly positive length or size to a vector in a vector224

space, other than the zero vector.225

||cci − chi ||p(t) = p

√√√√ wd∑
k=t−wd+1

|cci(k)− chi (k)|p (8)226

Only the unit norm (p = 1) is considered.227

• The relative increment in mean component values ∆ci indicates the percentage of228

relative increment between the current values (averaged through a defined time) and229

the historical ones (also averaged).230

∆ci(t) = 100 · c̄
c
i − c̄hi
c̄hi

(9)231

where the means have been computed during a time interval wd.232

• The relative increment in mean component consumption ∆cd
i indicates the percentage233

of relative increment between the current consumption (averaged through a defined234

time) and the historical one (also averaged). This indicator is similar to the previous235

one, but the components’ consumptions in l/s are used instead of the dimensionless236

values.237

∆cd
i(t) = 100 ·

∑wd
k=t−wd+1(c

c
i(t) · qin

c(t))/t−
∑wd

k=t−wd+1(c
h
i (t) · qin

h(t))/t∑wd
k=t−wd+1(c

c
i(t) · qin

c(t))/t
(10)238

where superscripts c and h in qin refer to current and historical total inflow, respec-239

tively.240
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• The relative residual coefficient gives a measure about the relative variation between241

two probability distributions considering the 95% confidence intervals.242

rResi(t) =
100

wd

t∑
k=t−wd+1

(cci(k)− 1.96σcci (k))− (chi (k) + 1.96σchi (k))

|chi (k) + 1.96σchi (k)|
(11)243

This measure only gives positive values when the current component lower bound is244

higher than the 95% upper bound of the historical component.245

Setting of thresholds246

The presented detection indicators evaluate the variation in demand components by247

comparing the current components’ values with the previous week ones. As the variations248

become higher, the probability of having an anomaly in the network increases. Variations249

in demand components have different effects on detection indicators; e.g. the unit norm is250

sensitive to changes in the component average value, whereas the conditional overlapping251

only considers positive changes in it. Therefore, the six indicators are combined to obtain a252

more robust detection.253

Each detection indicator gives a score to each demand component depending on its vari-254

ation. The sum of scores is then used to decide if the component has an anomaly or not.255

The scores given by the detection indicators depend on thresholds. The definition of a256

unique threshold for each indicator may produce poor leakage detection or excessive false257

alarms. Instead, two thresholds are defined for each indicator, giving 1 or 2 score points when258

overtaking the first and second threshold, respectively. Detection indicators’ thresholds are259

defined separately, but shared by all demand components.260

The thresholds values are determined through a training process when no leakage is261

present in the network. The mean and standard deviation of each detection indicator are262

computed during the non-faulty scenario. Then, the thresholds are set so that the proba-263

bility of data being under the low detection threshold is 80%, and the probability of data264

being under the high detection threshold is 95%, for the worst component in each indicator.265
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The worst case is used to avoid false alarms. Finally, the global threshold (sum of indi-266

vidual scores) is set so that the total sum of the non-faulty indicators is under this value.267

The thresholds setting proposed is performed in a way that if the network remains in the268

same state, the probability of data falling outside thresholds is 20% for the lower detection269

threshold and 5% for the higher one, for the worst component in each indicator.270

In the end, we have a system that triggers the alarm in a particular demand component271

if the total score for that component is higher than the global threshold. As a result, the272

methodology is able not only to detect the leakage, but also to classify it in a determined273

demand component, which is associated to a specific zone of the network.274

Effect of undetected anomalies275

Setting the thresholds for the leak detection and localisation process is assumed to be276

done over a non-faulty state of the network. However, different types of errors or anomalies277

can exist both in the model or network, like undetected bursts, existing background leakages,278

unknown status valves (Walski et al. 2014), or bad estimated roughness, among others. The279

presence of these anomalies can be treated depending on when the anomaly has appeared280

without being aware of it:281

1. Before setting the thresholds: The undetected anomaly will hinder the best demand282

adjustment. Nevertheless, this anomaly will be incorporated into the calibrated de-283

mand components model. Consequently, the methodology will be able to detect new284

bursts that cause a change in the components from that moment on.285

2. After setting the thresholds: The currently calibrated demand components will ac-286

commodate their values to adapt to the new network pressures, provoking a change287

compared to the historic demand components. Future studies will analyse this sce-288

nario to observe if the methodology is able to detect and locate the non-burst anoma-289

lies. These events may induce similar pressure-flow variations in the network as the290

ones produced by bursts.291
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This work assumes that none of this anomalies are present before or after the setting of the292

thresholds.293

Localization294

This section presents two methods (direct method and leak membership method) to in-295

terpret the geographical information contained in the nodes’ memberships and locate the296

detected leak.297

The direct method locates the leak depending on the membership of each node to the298

abnormal demand component. The higher the membership of a node to the abnormal compo-299

nent, the higher the probability of leak occurring in that node. The geographical distribution300

of demand components will indicate a particular zone in the network with high probability301

to contain the leak.302

The leak membership method consists in calculating the theoretical leak memberships303

to demand components. When leakage is present, pressures decrease due to the increasing304

flow. Consequently, the calibration process modifies the demand components values to adapt305

the model to the new pressures. Therefore, all components suffer higher or lower variations306

that can be attributed to the leak. These variations define the theoretical leak memberships.307

Subsequently, the leak memberships are compared with the ones from all network nodes using308

the Pearson correlation. The higher the correlation in a node, the higher the probability of309

that node to contain the leak.310

CASE STUDY311

The leak detection and localization methodology is applied to a real network model with312

synthetic data. The network is a DMA situated in the Barcelona neighbourhood of Nova313

Icaria. It is composed of 3455 pipes and 3377 junctions, as depicted in Fig. 3. Water is314

supplied to the network through two pressure reduction valves, highlighted in Fig. 3 with a315

triangle and a circle. Pressure and flow are monitored at both water inlets with a sample time316

of 10 minutes. The resolution is 0.01 l/s for the flow sensors, and 0.01 mwc (meters of water317

column) for both the inlet and pressure sensors within the DMA. Although high resolution318
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data cannot be directly provided by real sensors, this could be achieved by oversampling319

(Pandya and Gupta 2014), which is also useful to filter noise. Status of all valves in the320

network is known. The mean daily consumption is of about 33 l/s, with a minimum night321

flow of 20 l/s and peak hour flows of 50 l/s.322

Synthetic data generation323

The generation of synthetic data requires a previous emulation of reality. A complete set324

of synthetic demands has been computed to represent reality, where different consumers use325

water differently (e.g. household, commercial, industrial, etc.). First, ten diurnal demand326

patterns have been defined, representing different types of users. Each nodal demand in327

the network has an associated type of user. These types are mixed all over the network,328

emulating the real behaviour of the used DMA. All patterns, and consequently all nodal329

demands, have different behaviours during weekdays and weekends. A random normal noise330

N(0, 0.1 · di(t)) has been added to each individual demand at each sample, where di(t) is331

the consumption of node i at sample t without noise.332

Finally, the network model is simulated using EPANET in order to obtain pressures at333

the defined sensors and distribution of flows at the inputs. Base demands and boundary334

conditions (total flow and pressure set points) have been obtained from real measurements335

provided by the Barcelona water utility AGBAR. A random noise N(0,0.01mwc) has been336

added to pressure measurements after simulating the network.337

Calibration parameters338

The number of demand components and sensors used depends on both the final appli-339

cation of the calibration and the budget for installing sensors. This work considers a small340

number of sensors (five) in order to mimic a situation typically found in the real network,341

where a small number of (e.g five) pressure sensors will be installed by the water company.342

These five sensors restrict the number of demand components that can be calibrated, as the343

system of equations in the well formulated calibration problem has to be over or equally344

determined. Consequently, the methodology presented in the problem statement section will345
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be used to define the memberships of nodes to five demand components, and the location of346

the five pressure sensors that are going to be used. Flow sensors will be considered in future347

studies.348

Fig. 4 depicts the distribution of demand components (greyscale maps) and sensors (green349

circles). The geographical distribution of demand components can be observed through the350

nodes memberships: the higher the membership, the darker the colour in Fig. 4.351

Generation of scenarios352

Nine leakage scenarios have been generated to evaluate the performance of the method-353

ology developed. Leaks are assumed to be located at the nodes of the network. This354

simplification implies a loss of accuracy of the order of the pipe length. Such simplification355

can be assumed if the maximum localization error required by the company is greater than356

this length (Pérez et al. 2014). In order to simulate a leak, an emitter coefficient Ce is set357

in a node so that the leak size generated depends on the pressure of that node (Rossman358

2000), as described in Eq. 12.359

q = Ce · pγ (12)360

where q is the leak water discharge; Ce is the emitter coefficient; p is the pressure at the361

node; and γ is an exponent of about 0.5 (Hazen-Williams, Darcy-Weisbach, Chezy-Manning362

formulas (Rossman 2000)).363

Three different locations (signalled in Fig. 4 with red stars) and three different sizes of364

leaks are tested. Leak 1 (L1) is located in the effect zone of component c5; leak 2 (L2) is365

located in the effect zone of component c3; and leak 3 (L3) is located in the effect zone of366

component c4. Tab. 2 presents the main characteristics of the generated scenarios.367

Results presented in the following section consider leaks appearing at low consumption368

hours. Additional scenarios (not included in this work) where leaks occur at the peak369

consumption hour have been also tested, obtaining similar results.370

RESULTS371
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This section presents the results when applying the methodology combining calibration,372

leak detection and localization.373

Calibration374

The calibration process is applied considering the five components and sensors that have375

been selected in the previous section. As mentioned by Walski et al. (2014), it is necessary376

to have head loss in the system that is significantly greater than the error in measurement377

to avoid random adjustments. In the current case study, the maximum head loss is of about378

7.2 m, which fulfils the mentioned requirement. The values of the five demand components379

are calibrated by minimising the error in pressure and flow measurements at each hour using380

the LS-based methodology detailed in (Sanz and Pérez 2015). The uncertainty calculation is381

done by propagating the sensors’ noise using the First Order Second Moment model (Lansey382

et al. 2001). Fig. 5 depicts two weeks (without weekends) of calibrated component c5 and383

its 95% confidence intervals. The first week (day 1 to 5) represents a non-faulty scenario.384

At the beginning of the second week (days 6 to 10), a 5 l/s leakage appears.385

The validation of the calibrated components is done by comparing the proportion of386

consumed water calculated from the calibrated values with the one calculated from billing.387

Fig. 6 depicts this validation in two scenarios: a) No leakage scenario; and b) 5 l/s leakage388

scenario. Each of the radius represents a different demand component. Fig. 6.a verifies389

the success of the calibration, whereas Fig. 6.b warns of a bad calibration that has to be390

analysed.391

Selection of detection indicators’ time windows and thresholds392

The six detection indicators presented in the methodology section have to be detailed for393

the current case study. A time window of 12h is selected for the calculation of the detection394

indicators to detect changes in a fast but reliable way. However, the correlation and unit395

norms indicators have to be computed with a 24h time window due to their instability when396

calculated with a narrower window.397

The selection of thresholds has to be done on a non-faulty state of the network. In398
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this work, the non-faulty scenario is known (Fig. 6.a). In a real case, the validation of the399

calibration presented in Fig. 6 would be used to advise about the state of the network. In case400

of network experiencing undetectable burst or background leakage (Fig. 6.b) before applying401

the methodology presented, this leakage would be considered as part of the demand model402

and thresholds would be set without taking it into account. The methodology would still be403

able to detect and locate new leaks occurring from that moment on.404

Fig. 7 shows the six indicators with the defined thresholds for each one. The 80% and 95%405

confidence intervals (CI) are marked with dashed and dash-dotted lines, respectively. These406

thresholds have been computed using the component with highest probability of having a407

false alarm during the non-faulty scenario in each of the detection indicators.408

Fig. 8 depicts the sum of scores obtained from the indicators. Only demand components409

c1, c2 and c5 get no null scores during the non-faulty scenario. The highest score is obtained410

in demand component c1 with a value of 3. Consequently, the global detection threshold is411

set at a value of 4 (dashed line in Fig. 8).412

Leak detection and localization413

The methodology is tested using the nine faulty scenarios defined in Tab. 2 plus a non414

faulty scenario (S0). Tab. 3 sums up the results for all the scenarios in terms of detection,415

detection time and localization accuracy. Accuracy is presented as the distance (geographic416

and pipe distance) between the real leak and the node selected by the methodology as the417

one with highest probability to contain the leak. These distances are computed for both418

the direct method and the leak membership method. The best result for each distance is419

highlighted in boldface letter.420

Fig. 9 depicts the graphical results for scenarios S3 (Fig. 9.a,b), S4 (Fig. 9.c,d) and S8421

(Fig. 9.e,f) using greyscale maps. The first column of subfigures (Fig. 9.a,c,e) refers to the422

direct method, whereas the second column (Fig. 9.b,d,f) refers to the leak membership method.423

The darker the colour in the greyscale map, the higher probability of the node to contain424

the leak.425
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Fig. 10 depicts the geographical distance of all nodes in the network from the real leak (x426

axis), together with the indicator that gives a probability for the fault occurring in each node427

(y axis). For the direct approach (Fig. 10.a,c,e), the indicator is the normalized member-428

ship; and for the leak membership approach (Fig. 10.b,d,f), the indicator is the correlation.429

Each row of subfigures corresponds to scenarios S3 (Fig. 10.a,b), S4 (Fig. 10.c,d) and S8430

(Fig. 10.e,f). The node with the highest indicator value is shown with a red dashed line.431

Fig. 11 depicts the same information but this time in terms of pipe distance from each node432

to the real leak. This distance helps to assess the use of acoustic methods that can locate433

precisely the leak if it is within a determined pipe distance. The teams looking for the434

leak would start from the node with highest probability of containing it (red dashed line in435

Fig. 11). The search direction is given by the leak probability of nodes in the vicinity of the436

one with highest probability.437

Discussion438

Leakage is detected in 8 out of the 9 faulty scenarios, as seen in Tab. 3. The 1 l/s leak439

located in demand component c4 (S9) is the only one that has not been detected. The440

high consumption of the component (≈30% of the total) masks the effect of the already441

low leakage water discharge (2.5% distributed among all components) and consequently, the442

changes in detection indicators are not large enough to identify a leak.443

The non-faulty scenario is tested by considering a validation scenario (S0) with different444

boundary conditions than the one used to set the thresholds. A good result is obtained as445

no false alarms are triggered during this scenario.446

All the evaluated leaks have been located in the component with highest memberships in447

the leak zone. Memberships are defined depending on the nodes’ pressure sensitivity, thus448

any anomaly that affects pressure will have a greater impact on the predominant demand449

component of the anomalous zone than in any other demand component. This was the450

expected behaviour that motivated the use of geographically distributed parameters to locate451

leaks.452
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Detection times depend on the relation between leak size and water consumption of453

the predominant demand component in the leak zone. This relation is directly linked to the454

variations in calibrated demand components: low consumption demand components are more455

affected by leaks than high consumption ones, in the same way that leaks with high water456

discharge have a greater effect than leaks with low water discharge. Hence, large variations457

in demand components are instantly identified by the detection indicators, whereas small458

variations require a larger number of time samples to be analysed to identify if an anomaly459

is occurring or not.460

The leak membership method presents better results in terms of localization accuracy461

because it considers the effect of the leak on all demand components, whereas the direct462

method only considers the effect of the leak on the demand component with higher nodes’463

memberships in the leak zone. The localization accuracy generated by the leak membership464

method is about 180 metres in all scenarios except in case of S6. Pipe distances are greater465

than the geographic ones, but present an equivalent qualitative behaviour in terms of accu-466

racy, as seen in Fig. 10 and Fig. 11. The worst result is obtained for the 1 l/s leak 2 (S6) due467

to the small leak size together with its location in a zone where the predominant component468

has low memberships (30%-40%). The changes in the demand components are significant469

enough to detect the leak but not to locate it accurately.470

The methodology is able to distinguish between demand evolution and burst appearance.471

Daily, weekly and seasonal changes cannot be confused with leakage because: 1) calibrated472

demands are considered to have daily periodicity; and 2) the comparison between demand473

components uses data from the same samples of the previous week. On the other hand, the474

long term evolution is progressively incorporated in the model by the continuous update of475

online calibrated demand components. This evolution is assumed to have slower impact on476

the online calibration than the one caused by a burst.477

CONCLUSIONS478

This work presents a leak detection and localization methodology combined with cali-479
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bration. Leakage detection is based on the comparison between currently calibrated compo-480

nents and historical ones. Then, the geographical distribution of demand parameters allows481

a straightforward localization of the leak.482

The methodology presented is a first step in the integration of model calibration and483

leakage detection and location. In future stages the methodology can be modified to work484

with evolutionary methods so that the changes in demand components can be detected485

and classified (e.g. using ANNs) to detect and locate leakages or other anomalies; or the486

calibration methodology be based on GAs. Currently, the calibration methodology is LS-487

based and the detection and localization is based on the detection indicators analyses.488

Detectability of leaks depends on the relation between the leak water discharge and489

demand components’ consumption. Small leakages located in zones with high consumption490

components are not detectable due to the small variations caused on them.491

Two methods are proposed to locate the leak in a specific area of the network. The leak492

membership method shows better accuracy in most of the tested scenarios as it considers493

the effect of the leak on all components. The method loses accuracy when considering small494

leaks (1 l/s) whose effect is distributed among several demand components.495

In conclusion, leaks with a water discharge smaller than the affected components’ un-496

certainty may be overlooked; or detected but located with low accuracy. This limitation497

can be improved by the inclusion of extra sensors that reduce the calibrated components’498

uncertainty. A second possible solution is to utilise these new sensors to increase the num-499

ber of components, which would have less consumption and consequently, would be more500

sensitive to leakage. Additionally, leaks that induce pressure variations lower than sensors’501

uncertainty cannot be detected.502

This paper presents a first analysis of a detection and localization method with promising503

results. However, the developed methodology has to be further tested in additional case504

studies under multiple conditions to be able to generalise the findings. Additional scenarios505

including multiple leaks will be analysed to determine the ability to detect simultaneous506
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burst. Future work will consider the minimum detectable leakage depending on sensors’507

resolution. Additionally, flow sensors will be tested and compared with pressure sensors508

in order to assess which is the best option. A future real case test will be performed when509

having real data available. Finally, the comparison with other methods will be done to assess510

the applicability over other approaches.511
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Sanz, G. and Pérez, R. (2015). “Sensitivity Analysis for Sampling Design and Demand592

Calibration in Water Distribution Networks Using the Singular Value Decomposition.”593

Journal of Water Resources Planning and Management, 04015020.594

Savic, D., Kapelan, Z., and Jonkergouw, P. (2009). “Quo vadis water distribution model595

calibration?.” Urban Water Journal, 6(1), 3–22.596

24



Sumer, D. and Lansey, K. (2009). “Effect of Uncertainty on Water Distribution System597

Model Design Decisions.” Journal of Water Resources Planning and Management, 135(1),598

38–47.599
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TABLE 1. Memberships of nodes A and B of the example network

Component 1 Component 2 Component 3
Node A membership 0.6 0.05 0.35
Node B membership 0.01 0 0.99
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TABLE 2. Summary of the generated leakage scenarios

Scenario S1 S2 S3 S4 S5 S6 S7 S8 S9
Leak L1 L2 L3

Mean daily
water

discharge
5l/s 3l/s 1l/s 5l/s 3l/s 1l/s 5l/s 3l/s 1l/s

% of total
consumption

13% 8% 2.5% 13% 8% 2.5% 13% 8% 2.5%
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TABLE 3. Summary of results for each scenario

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9
Detection - X X X X X X X X x

Detection time - 3h 4h 4h 4h 6h 6h 6h 10h -
Geogr. distance to
real leak [direct ]

(m)
- 183 183 183 657 657 657 220 220 -

Geogr. distance to
real leak [leak
memb.] (m)

- 224 177 183 206 185 527 145 145 -

Pipe distance to
real leak [direct ]

(m)
- 231 231 231 857 857 857 365 365 -

Pipe distance to
real leak [leak
memb.] (m)

- 396 231 231 293 263 698 181 181 -
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FIG. 10. Geographical distance from each node to the real leak depending on mem-
bership and correlation for scenarios S3, S4 and S8 (rows)
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a) Direct approach: L1 1 l/s
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c) Direct approach: L2 5 l/s
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e) Direct approach: L3 3 l/s
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FIG. 11. Pipe distance from each node to the real leak depending on membership and
correlation for scenarios S3, S4 and S8 (rows)
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