2,455 research outputs found

    The optical polarization of Epsilon Aurigae through the 1982-84 eclipse

    Get PDF
    About 350 nights observations on the 61-cm telescope at Pine Mt. Observatory were made of the variable polarization of Eps. Aurigae during 1982-85, in the U, B, and V color bands. The V data are the most complete and are shown. In terms of the overall features the curves in all three colors are quite similar. The typical errors per nightly point in the V curves are about 0.015% for either of the two normalized, equatorial Stokes parameters Q and U. Note that there is a large background or constant component of some 2.5%, position angle around 135 deg. This is presumably largely interstellar, and the intrinsic polarization probably does not much exceed the amplitude of the variable component, approx. 0.5%. A few field-star polarizations were measured but a very clear pattern was not obtained in this part of the sky

    Spacelike distance from discrete causal order

    Get PDF
    Any discrete approach to quantum gravity must provide some prescription as to how to deduce continuum properties from the discrete substructure. In the causal set approach it is straightforward to deduce timelike distances, but surprisingly difficult to extract spacelike distances, because of the unique combination of discreteness with local Lorentz invariance in that approach. We propose a number of methods to overcome this difficulty, one of which reproduces the spatial distance between two points in a finite region of Minkowski space. We provide numerical evidence that this definition can be used to define a `spatial nearest neighbor' relation on a causal set, and conjecture that this can be exploited to define the length of `continuous curves' in causal sets which are approximated by curved spacetime. This provides evidence in support of the ``Hauptvermutung'' of causal sets.Comment: 32 pages, 16 figures, revtex4; journal versio

    Quantum Gravity Phenomenology, Lorentz Invariance and Discreteness

    Full text link
    Contrary to what is often stated, a fundamental spacetime discreteness need not contradict Lorentz invariance. A causal set's discreteness is in fact locally Lorentz invariant, and we recall the reasons why. For illustration, we introduce a phenomenological model of massive particles propagating in a Minkowski spacetime which arises from an underlying causal set. The particles undergo a Lorentz invariant diffusion in phase space, and we speculate on whether this could have any bearing on the origin of high energy cosmic rays.Comment: 13 pages. Replaced version with corrected fundamental solution, missing m's (mass) and c's (speed of light) added and reference on diffusion on the three sphere changed. Note with additional references added and addresses updated, as in published versio

    Wireless recording of the calls of Rousettus aegyptiacus and their reproduction using electrostatic transducers

    Get PDF
    Bats are capable of imaging their surroundings in great detail using echolocation. To apply similar methods to human engineering systems requires the capability to measure and recreate the signals used, and to understand the processing applied to returning echoes. In this work, the emitted and reflected echolocation signals of Rousettus aegyptiacus are recorded while the bat is in flight, using a wireless sensor mounted on the bat. The sensor is designed to replicate the acoustic gain control which bats are known to use, applying a gain to returning echoes that is dependent on the incurred time delay. Employing this technique allows emitted and reflected echolocation calls, which have a wide dynamic range, to be recorded. The recorded echoes demonstrate the complexity of environment reconstruction using echolocation. The sensor is also used to make accurate recordings of the emitted calls, and these calls are recreated in the laboratory using custom-built wideband electrostatic transducers, allied with a spectral equalization technique. This technique is further demonstrated by recreating multi-harmonic bioinspired FM chirps. The ability to record and accurately synthesize echolocation calls enables the exploitation of biological signals in human engineering systems for sonar, materials characterization and imaging

    Feynman Propagator for a Free Scalar Field on a Causal Set

    Full text link
    The Feynman propagator for a free bosonic scalar field on the discrete spacetime of a causal set is presented. The formalism includes scalar field operators and a vacuum state which define a scalar quantum field theory on a causal set. This work can be viewed as a novel regularisation of quantum field theory based on a Lorentz invariant discretisation of spacetime.Comment: 4 pages, 2 plots. Minor updates to match published versio

    Energy-momentum diffusion from spacetime discreteness

    Full text link
    We study potentially observable consequences of spatiotemporal discreteness for the motion of massive and massless particles. First we describe some simple intrinsic models for the motion of a massive point particle in a fixed causal set background. At large scales, the microscopic swerves induced by the underlying atomicity manifest themselves as a Lorentz invariant diffusion in energy-momentum governed by a single phenomenological parameter, and we derive in full the corresponding diffusion equation. Inspired by the simplicity of the result, we then derive the most general Lorentz invariant diffusion equation for a massless particle, which turns out to contain two phenomenological parameters describing, respectively, diffusion and drift in the particle's energy. The particles do not leave the light cone however: their worldlines continue to be null geodesics. Finally, we deduce bounds on the drift and diffusion constants for photons from the blackbody nature of the spectrum of the cosmic microwave background radiation.Comment: 13 pages, 4 figures, corrected minor typos and updated to match published versio

    Quantum Dynamics without the Wave Function

    Get PDF
    When suitably generalized and interpreted, the path-integral offers an alternative to the more familiar quantal formalism based on state-vectors, selfadjoint operators, and external observers. Mathematically one generalizes the path-integral-as-propagator to a {\it quantal measure} μ\mu on the space Ω\Omega of all ``conceivable worlds'', and this generalized measure expresses the dynamics or law of motion of the theory, much as Wiener measure expresses the dynamics of Brownian motion. Within such ``histories-based'' schemes new, and more ``realistic'' possibilities open up for resolving the philosophical problems of the state-vector formalism. In particular, one can dispense with the need for external agents by locating the predictive content of μ\mu in its sets of measure zero: such sets are to be ``precluded''. But unrestricted application of this rule engenders contradictions. One possible response would remove the contradictions by circumscribing the application of the preclusion concept. Another response, more in the tradition of ``quantum logic'', would accommodate the contradictions by dualizing Ω\Omega to a space of ``co-events'' and effectively identifying reality with an element of this dual space.Comment: plainTeX, 24 pages, no figures. To appear in a special volume of {\it Journal of Physics A: Mathematical and General} entitled ``The Quantum Universe'' and dedicated to Giancarlo Ghirardi on the occasion of his 70th birthday. Most current version is available at http://www.physics.syr.edu/~sorkin/some.papers/ (or wherever my home-page may be

    Applying causality principles to the axiomatization of probabilistic cellular automata

    Full text link
    Cellular automata (CA) consist of an array of identical cells, each of which may take one of a finite number of possible states. The entire array evolves in discrete time steps by iterating a global evolution G. Further, this global evolution G is required to be shift-invariant (it acts the same everywhere) and causal (information cannot be transmitted faster than some fixed number of cells per time step). At least in the classical, reversible and quantum cases, these two top-down axiomatic conditions are sufficient to entail more bottom-up, operational descriptions of G. We investigate whether the same is true in the probabilistic case. Keywords: Characterization, noise, Markov process, stochastic Einstein locality, screening-off, common cause principle, non-signalling, Multi-party non-local box.Comment: 13 pages, 6 figures, LaTeX, v2: refs adde

    Making Tactile Textures with Predefined Affective Properties

    Get PDF
    A process for the design and manufacture of 3D tactile textures with predefined affective properties was developed. Twenty four tactile textures were manufactured. Texture measures from the domain of machine vision were used to characterize the digital representations of the tactile textures. To obtain affective ratings, the textures were touched, unseen, by 107 participants who scored them against natural, warm, elegant, rough, simple, and like, on a semantic differential scale. The texture measures were correlated with the participants' affective ratings using a novel feature subset evaluation method and a partial least squares genetic algorithm. Six measures were identified that are significantly correlated with human responses and are unlikely to have occurred by chance. Regression equations were used to select 48 new tactile textures that had been synthesized using mixing algorithms and which were likely to score highly against the six adjectives when touched by participants. The new textures were manufactured and rated by participants. It was found that the regression equations gave excellent predictive ability. The principal contribution of the work is the demonstration of a process, using machine vision methods and rapid prototyping, which can be used to make new tactile textures with predefined affective properties
    corecore