43 research outputs found

    Collapse of a Circular Loop of Cosmic String

    Full text link
    We study the collapse of a circular loop of cosmic string. The gravitational field of the string is treated using the weak field approximation. The gravitational radiation from the loop is evaluated numerically. The memtric of the loop near the point of collapse is found analytically.Comment: 15 page

    Choptuik scaling in six dimensions

    Full text link
    We perform numerical simulations of the critical gravitational collapse of a spherically symmetric scalar field in 6 dimensions. The critical solution has discrete self-similarity. We find the critical exponent \gamma and the self-similarity period \Delta.Comment: 8 pages, 3 figures RevTe

    Simulated VLBI Images From Relativistic Hydrodynamic Jet Models

    Get PDF
    A series of simulated maps showing the appearance in total intensity of flows computed using a recently developed relativistic hydrodynamic code (Duncan \& Hughes 1994: ApJ, 436, L119) are presented. The radiation transfer calculations were performed by assuming the flow is permeated by a magnetic field and fast particle distribution in energy equipartition, with energy density proportional to the hydrodynamic energy density (i.e., pressure). We find that relativistic flows subject to strong perturbations exhibit a density structure consisting of a series of nested bow shocks, and that this structure is evident in the intensity maps for large viewing angles. However, for viewing angles <30∘<30^{\circ}, differential Doppler boosting leads to a series of axial knots of emission, similar to the pattern exhibited by many VLBI sources. The appearance of VLBI knots is determined primarily by the Doppler boosting of parts of a more extended flow. To study the evolution of a perturbed jet, a time series of maps was produced and an integrated flux light curve created. The light curve shows features characteristic of a radio loud AGN: small amplitude variations and a large outburst. We find that in the absence of perturbations, jets with a modest Lorentz factor (∌5\sim 5) exhibit complex intensity maps, while faster jets (Lorentz factor ∌10\sim 10) are largely featureless. We also study the appearance of kiloparsec jet-counterjet pairs by producing simulated maps at relatively large viewing angles; we conclude that observed hot spot emission is more likely to be associated with the Mach disk than with the outer, bow shock.Comment: 27 pages, uses aasms4.sty; 18 PostScript figures (1.57Mb gziped, 8.67Mb gunziped) available from http://www.astro.lsa.umich.edu/users/hughes/icon_dir/rad.html or by anonymous ftp from ra.astro.lsa.umich.edu in pub/get/hughes. Submitted to Ap.

    A Comparison of the Morphology and Stability of Relativistic and Nonrelativistic Jets

    Get PDF
    We compare results from a relativistic and a nonrelativistic set of 2D axisymmetric jet simulations. For a set of five relativistic simulations that either increase the Lorentz factor or decrease the adiabatic index we compute nonrelativistic simulations with equal useful power or thrust. We examine these simulations for morphological and dynamical differences, focusing on the velocity field, the width of the cocoon, the age of the jets, and the internal structure of the jet itself. The primary result of these comparisons is that the velocity field of nonrelativistic jet simulations cannot be scaled up to give the spatial distribution of Lorentz factors seen in relativistic simulations. Since the local Lorentz factor plays a major role in determining the total intensity for parsec scale extragalactic jets, this suggests that a nonrelativistic simulation cannot yield the proper intensity distribution for a relativistic jet. Another general result is that each relativistic jet and its nonrelativistic equivalents have similar ages (in dynamical time units, = R/a_a, where R is the initial radius of a cylindrical jet and a_a is the sound speed in the ambient medium). In addition to these comparisons, we have completed four new relativistic simulations to investigate the effect of varying thermal pressure on relativistic jets. The simulations generally confirm that faster (larger Lorentz factor) and colder jets are more stable, with smaller amplitude and longer wavelength internal variations. The apparent stability of these jets does not follow from linear normal mode analysis, which suggests that there are available growing Kelvin-Helmholtz modes. (Abridged.)Comment: 32 pages, AASTEX, to appear in May 10, 1999 issue of ApJ, better versions of Figures 1 and 6 are available at http://crux.astr.ua.edu/~rosen/rel/rhdh.htm

    Scaling of curvature in sub-critical gravitational collapse

    Get PDF
    We perform numerical simulations of the gravitational collapse of a spherically symmetric scalar field. For those data that just barely do not form black holes we find the maximum curvature at the position of the central observer. We find a scaling relation between this maximum curvature and distance from the critical solution. The scaling relation is analogous to that found by Choptuik for black hole mass for those data that do collapse to form black holes. We also find a periodic wiggle in the scaling exponent.Comment: Revtex, 2 figures, Discussion modified, to appear in Phys. Rev.

    Numerical evolution of Brill waves

    Full text link
    We report a numerical evolution of axisymmetric Brill waves. The numerical algorithm has new features, including (i) a method for keeping the metric regular on the axis and (ii) the use of coordinates that bring spatial infinity to the edge of the computational grid. The dependence of the evolved metric on both the amplitude and shape of the initial data is found.Comment: added more discussion of results and several reference

    3D Hydrodynamic Simulations of Relativistic Extragalactic Jets

    Get PDF
    We describe a new numerical 3D relativistic hydrodynamical code, the results of validation tests, and a comparison with earlier, 2D studies. The 3D code has been used to study the deflection and precession of relativistic flows. We find that even quite fast jets (gamma~10) can be significantly influenced by impinging on an oblique density gradient, exhibiting a rotation of the Mach disk in the jet's head. The flow is bent via a potentially strong, oblique internal shock that arises due to asymmetric perturbation of the flow by its cocoon. In extreme cases this cocoon can form a marginally relativistic flow orthogonal to the jet, leading to large scale dynamics quite unlike that normally associated with astrophysical jets. Exploration of a gamma=5 flow subject to a large amplitude precession (semi-angle 11.25dg) shows that it retains its integrity, with modest reduction in Lorentz factor and momentum flux, for almost 50 jet-radii, but thereafter, the collimated flow is disrupted. The flow is approximately ballistic, with velocity vectors not aligned with the local jet `wall'. We consider simple estimators of the flow emissivity in each case and conclude that a) while the oblique internal shocks which mediate a small change in the direction of the deflected flows have little impact on the global dynamics, significantly enhanced flow emission (by a factor of 2-3) may be associated with such regions; and b) the convolution of rest frame emissivity and Doppler boost in the case of the precessed jet invariably leads to a core-jet-like structure, but that intensity fluctuations in the jet cannot be uniquely associated with either change in internal conditions or Doppler boost alone, but in general are a combination of both factors.Comment: 41 pages, including 15 figures. Submitted to ApJ. Version with complete abstract. and full resolution, color figures available from http://www.astro.lsa.umich.edu/users/hughes/icon_dir/cfd.htm

    Parameterization of a coarse-grained model of cholesterol with point-dipole electrostatics

    Get PDF
    © 2018, Springer Nature Switzerland AG. We present a new coarse-grained (CG) model of cholesterol (CHOL) for the electrostatic-based ELBA force field. A distinguishing feature of our CHOL model is that the electrostatics is modeled by an explicit point dipole which interacts through an ideal vacuum permittivity. The CHOL model parameters were optimized in a systematic fashion, reproducing the electrostatic and nonpolar partitioning free energies of CHOL in lipid/water mixtures predicted by full-detailed atomistic molecular dynamics simulations. The CHOL model has been validated by comparison to structural, dynamic and thermodynamic properties with experimental and atomistic simulation reference data. The simulation of binary DPPC/cholesterol mixtures covering the relevant biological content of CHOL in mammalian membranes is shown to correctly predict the main lipid behavior as observed experimentally

    The Gene Pool Concept Applied to Crop Wild Relatives: An Evolutionary Perspective

    Get PDF
    Crop wild relatives (CWR) can provide important resources for the genetic improvement of cultivated species. Because crops are often related to many wild species and because exploration of CWR for useful traits can take many years and substantial resources, the categorization of CWR based on a comprehensive assessment of their potential for use is an important knowledge foundation for breeding programs. The initial approach for categorizing CWR was based on crossing studies to empirically establish which species were interfertile with the crop. The foundational concept of distinct gene pools published almost 50 years ago was developed from these observations. However, the task of experimentally assessing all potential CWR proved too vast; therefore, proxies based on phylogenetic and other advanced scientific information have been explored. A current major approach to categorize CWR aims to comprehensively synthesize experimental data, taxonomic information, and phylogenetic studies. This approach very often ends up relying not only on the synthesis of data but also intuition and expert opinion and is therefore difficult to apply widely in a reproducible manner. Here, we explore the potential for a stronger standardization of the categorization method, with focus on evolutionary relationships among species combined with information on patterns of interfertility between species. Evolutionary relationships can be revealed with increasing resolution via next-generation sequencing, through the application of the multispecies coalescent model and using focused analyses on species discovery and delimitation that bridge population genetics and phylogenetics fields. Evolutionary studies of reproductive isolation can inform the understanding of patterns of interfertility in plants. For CWR, prezygotic postpollination reproductive barriers and intrinsic postzygotic barriers are the most important factors and determine the probability of producing viable and fertile offspring. To further the assessment of CWR for use in plant breeding, we present observed and predicted gene pool indices. The observed index quantifies patterns of interfertility based on fertilization success, seed production, offspring viability, and hybrid fertility. The predicted gene pool index requires further development of the understanding of quantitative and qualitative relationships between reproductive barriers, measures of genetic relatedness, and other relevant characteristics for crops and their wild relatives

    The protocol for the Families First Edmonton trial (FFE): a randomized community-based trial to compare four service integration approaches for families with low-income

    Full text link
    corecore