2,375 research outputs found
Evolution of Lyman Break Galaxies Beyond Redshift Four
The formation rate of luminous galaxies seems to be roughly constant from z~2
to z~4 from the recent observations of Lyman break galaxies (LBGs) (Steidel et
al 1999). The abundance of luminous quasars, on the other hand, appears to drop
off by a factor of more than twenty from z~2 to z~5 (Warren, Hewett, & Osmer
1994; Schmidt, Schneider, & Gunn 1995). The difference in evolution between
these two classes of objects in the overlapping, observed redshift range,
z=2-4, can be explained naturally, if we assume that quasar activity is
triggered by mergers of luminous LBGs and one quasar lifetime is ~10^{7-8} yrs.
If this merger scenario holds at higher redshift, for the evolutions of these
two classes of objects to be consistent at z>4, the formation rate of luminous
LBGs is expected to drop off at least as rapidly as exp(-(z-4)^{6/5}) at z>4.Comment: in press, ApJ Letters, 15 latex pages plus 1 fi
Studying the WHIM Content of the Galaxy Large-Scale Structures along the Line of Sight to H 2356-309
We make use of a 500ks Chandra HRC-S/LETG spectrum of the blazar H2356-309,
combined with a lower S/N spectrum of the same target, to search for the
presence of warm-hot absorbing gas associated with two Large-Scale Structures
(LSSs) crossed by this sightline at z=0.062 (the Pisces-Cetus Supercluster,
PCS) and at z=0.128 ("Farther Sculptor Wall", FSW). No statistically
significant (>=3sigma) individual absorption is detected from any of the strong
He- or H-like transitions of C, O and Ne at the redshifts of the structures.
However we are still able to constrain the physical and geometrical parameters
of the associated putative absorbing gas, by performing joint spectral fit of
marginal detections and upper limits of the strongest expected lines with our
self-consistent hybrid ionization WHIM spectral model. At the redshift of the
PCS we identify a warm phase with logT=5.35_-0.13^+0.07 K and log N_H
=19.1+/-0.2 cm^-2 possibly coexisting with a hotter and less significant phase
with logT=6.9^+0.1_-0.8 K and log N_H=20.1^+0.3_-1.7 cm^-2 (1sigma errors). For
the FSW we estimate logT=6.6_-0.2^+0.1 K and log N_H=19.8_-0.8^+0.4 cm^-2. Our
constraints allow us to estimate the cumulative number density per unit
redshifts of OVII WHIM absorbers. We also estimate the cosmological mass
density obtaining Omega_b(WHIM)=(0.021^+0.031_-0.018) (Z/Z_sun)^-1, consistent
with the mass density of the intergalactic 'missing baryons' for high
metallicities.Comment: 29 pages, 8 figures, 4 tables. Accepted for publication in Ap
Cosmic Reionization and the 21-cm signal: Comparison between an analytical model and a simulation
We measure several properties of the reionization process and the
corresponding low-frequency 21-cm signal associated with the neutral hydrogen
distribution, using a large volume, high resolution simulation of cosmic
reionization. The brightness temperature of the 21-cm signal is derived by
post-processing this numerical simulation with a semi-analytical prescription.
Our study extends to high redshifts (z ~ 25) where, in addition to collisional
coupling, our post-processed simulations take into account the inhomogeneities
in the heating of the neutral gas by X-rays and the effect of an inhomogeneous
Lya radiation field. Unlike the well-studied case where spin temperature is
assumed to be significantly greater than the temperature of the cosmic
microwave background due to uniform heating of the gas by X-rays, spatial
fluctuations in both the Lya radiation field and X-ray intensity impact
predictions related to the brightness temperature at z > 10, during the early
stages of reionization and gas heating. The statistics of the 21-cm signal from
our simulation are then compared to existing analytical models in the
literature and we find that these analytical models provide a reasonably
accurate description of the 21-cm power spectrum at z < 10. Such an agreement
is useful since analytical models are better suited to quickly explore the full
astrophysical and cosmological parameter space relevant for future 21-cm
surveys. We find, nevertheless, non-negligible differences that can be
attributed to differences in the inhomogeneous X-ray heating and Lya coupling
at z > 10 and, with upcoming interferometric data, these differences in return
can provide a way to better understand the astrophysical processes during
reionization.Comment: Major paper revision to match version accepted for publication in
ApJ. Simulation now fully includes fluctuations in the X-ray heating and the
Lya radiation field. 18 pages, 13 figure
Where Are the Baryons? II: Feedback Effects
Numerical simulations of the intergalactic medium have shown that at the
present epoch a significant fraction (40-50%) of the baryonic component should
be found in the (T~10^6K) Warm-Hot Intergalactic Medium (WHIM) - with several
recent observational lines of evidence indicating the validity of the
prediction. We here recompute the evolution of the WHIM with the following
major improvements: (1) galactic superwind feedback processes from galaxy/star
formation are explicitly included; (2) major metal species (O V to O IX) are
computed explicitly in a non-equilibrium way; (3) mass and spatial dynamic
ranges are larger by a factor of 8 and 2, respectively, than in our previous
simulations. Here are the major findings: (1) galactic superwinds have dramatic
effects, increasing the WHIM mass fraction by about 20%, primarily through
heating up warm gas near galaxies with density 10^{1.5}-10^4 times the mean
density. (2) the fraction of baryons in WHIM is increased modestly from the
earlier work but is ~40-50%. (3) the gas density of the WHIM is broadly peaked
at a density 10-20 times the mean density, ranging from underdense regions to
regions that are overdense by 10^3-10^4. (4) the median metallicity of the WHIM
is 0.18 Zsun for oxygen with 50% and 90% intervals being (0.040,0.38) and
(0.0017,0.83).Comment: 44 pages, 17 figures, high res version at
http://www.astro.princeton.edu/~cen/baryonII.ps.g
Local transformation of mixed states of two qubits to Bell diagonal states
The optimal entanglement manipulation for a single copy of mixed states of
two qubits is to transform it to a Bell diagonal state. In this paper we derive
an explicit form of the local operation that can realize such a transformation.
The result obtained is universal for arbitrary entangled two-qubit states and
it discloses that the corresponding local filter is not unique for density
matrices with rank and can be exclusively determined for that with
and 4. As illustrations, a four-parameters family of mixed states are explored,
the local filter as well as the transformation probability are given
explicitly, which verify the validity of the general result.Comment: 5 pages, to be published in Phys. Rev.
Degenerate multi-solitons in the sine-Gordon equation
We construct various types of degenerate multi-soliton and multi-breather solutions for the sine-Gordon equation based on Bäcklund transformations, Darboux–Crum transformations and Hirota's direct method. We compare the different solution procedures and study the properties of the solutions. Many of them exhibit a compound like behaviour on a small timescale, but their individual one-soliton constituents separate for large time. Exceptions are degenerate cnoidal kink solutions that we construct via inverse scattering from shifted Lamé potentials. These type of solutions have constant speed and do not display any time-delay. We analyse the asymptotic behaviour of the solutions and compute explicit analytic expressions for time-dependent displacements between the individual one-soliton constituents for any number of degeneracies. When expressed in terms of the soliton speed and spectral parameter the expression found is of the same generic form as the one formerly found for the Korteweg–de-Vries equation
Globular Cluster Systems and the Missing Satellite Problem: Implications for Cold Dark Matter Models
We analyze the metallicity distributions of globular clusters belonging to 28
early-type galaxies in the survey of Kundu & Whitmore (2001). A Monte Carlo
algorithm which simulates the chemical evolution of galaxies that grow
hierarchically via dissipationless mergers is used to determine the most
probable protogalactic mass function for each galaxy. Contrary to the claims of
Kundu & Whitmore, we find that the observed metallicity distributions are in
close agreement with the predictions of such hierarchical formation models. The
mass spectrum of protogalactic fragments for the galaxies in our sample has a
power-law behavior, with an exponent of roughly -2. This spectrum is
indistinguishable from the mass spectrum of dark matter halos predicted by cold
dark matter models for structure formation. We argue that these protogalactic
fragments, the likely sites of globular cluster formation in the early
universe, are the disrupted remains of the "missing" satellite galaxies
predicted by cold dark matter models. Our findings suggest that the solution to
the missing satellite problem is through the suppression of gas accretion in
low-mass halos after reionization, or via self-interacting dark matter, and
argue against models with suppressed small-scale power or warm dark matter.Comment: 28 pages, 19 postscript figures. Accepted for publication in the
Astrophysical Journa
Time Evolution of Galaxy Formation and Bias in Cosmological Simulations
The clustering of galaxies relative to the mass distribution declines with
time because: first, nonlinear peaks become less rare events; second, the
densest regions stop forming new galaxies because gas there becomes too hot to
cool and collapse; third, after galaxies form, they are gravitationally
``debiased'' because their velocity field is the same as the dark matter. To
show these effects, we perform a hydrodynamic cosmological simulation and
examine the density field of recently formed galaxies as a function of
redshift. We find the bias b_* of recently formed galaxies (the ratio of the
rms fluctuations of these galaxies and mass), evolves from 4.5 at z=3 to around
1 at z=0, on 8 h^{-1} Mpc comoving scales. The correlation coefficient r_*
between recently formed galaxies and mass evolves from 0.9 at z=3 to 0.25 at
z=0. As gas in the universe heats up and prevents star formation, star-forming
galaxies become poorer tracers of the mass density field. After galaxies form,
the linear continuity equation is a good approximation to the gravitational
debiasing, even on nonlinear scales. The most interesting observational
consequence of the simulations is that the linear regression of the
star-formation density field on the galaxy density field evolves from about 0.9
at z=1 to 0.35 at z=0. These effects also provide a possible explanation for
the Butcher-Oemler effect, the excess of blue galaxies in clusters at redshift
z ~ 0.5. Finally, we examine cluster mass-to-light ratio estimates of Omega,
finding that while Omega(z) increases with z, one's estimate Omega_est(z)
decreases. (Abridged)Comment: 31 pages of text and figures; submitted to Ap
- …