346 research outputs found

    Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth model

    Get PDF
    Thirty‒one GPS geodetic measurements of crustal uplift in southernmost South America determined extraordinarily high trend rates (> 35 mm/yr) in the north‒central part of the Southern Patagonian Icefield. These trends have a coherent pattern, motivating a refined viscoelastic glacial isostatic adjustment model to explain the observations. Two end‒member models provide good fits: both require a lithospheric thickness of 36.5 ± 5.3 km. However, one end‒member has a mantle viscosity near η =1.6 ×1018 Pa s and an ice collapse rate from the Little Ice Age (LIA) maximum comparable to a lowest recent estimate of 1995–2012 ice loss at about −11 Gt/yr. In contrast, the other end‒member has much larger viscosity: η = 8.0 ×1018 Pa s, half the post–LIA collapse rate, and a steadily rising loss rate in the twentieth century after AD 1943, reaching −25.9 Gt/yr during 1995–2012.Fil: Lange, H.. Technische Universitaet Dresden; AlemaniaFil: Casassa, G.. Centro de Estudios Cientificos; Chile. Universidad de Magallanes; ChileFil: Ivins, E. R.. Institute of Technology. Jet propulsion Laboratory; Estados UnidosFil: Schroeder, L.. Technische Universitaet Dresden; AlemaniaFil: Fritsche, M.. Technische Universitaet Dresden; AlemaniaFil: Richter, Andreas Jorg. Technische Universitaet Dresden; Alemania. Universidad Nacional de la Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Departamento de AstrometrĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; ArgentinaFil: Groh, A.. Technische Universitaet Dresden; AlemaniaFil: Dietrich, R.. Technische Universitaet Dresden; Alemani

    Quantifying mass balance processes on the Southern Patagonia Icefield

    Get PDF
    Artículo de publicación ISIWe present surface mass balance simulations of the Southern Patagonia Icefield (SPI) driven by downscaled reanalysis data. The simulations were evaluated and interpreted using geodetic mass balances, measured point balances and a complete velocity field of the icefield for spring 2004. The high measured accumulation of snow of up to 15.4 m w.e. yr−1 (meters water equivalent per year) as well as the high measured ablation of up to 11 m w.e. yr−1 is reproduced by the model. The overall modeled surface mass balance was positive and increasing during 1975–2011. Subtracting the surface mass balance from geodetic balances, calving fluxes were inferred. Mass losses of the SPI due to calving were strongly increasing from 1975–2000 to 2000– 2011 and higher than losses due to surface melt. Calving fluxes were inferred for the individual glacier catchments and compared to fluxes estimated from velocity data. Measurements of ice thickness and flow velocities at the glaciers’ front and spatially distributed accumulation measurements can help to reduce the uncertainties of the different terms in the mass balance of the Southern Patagonia Icefield.FONDECYT 3140135 European Union 22637

    Stochastic control applied to the ISWEC Wave Energy System

    Get PDF
    ISWEC (Inertial Sea Wave Energy Converter) is a fl oating marine device able to harvest sea waves energy by the interaction between the pitching motion of a fl oater and a spinning fl ywheel which can drive an electric PTO. In the ISWEC the hull dynamics is governed and controlled by the gyroscopic torque. The optimal control logic results in tuning the fl oater dynamics to the incoming waves in order to maximize the power transfer from the waves to the fl oater. In this paper the control problems of the ISWEC are stated and a control scheme based on the sub-optimal stochastic control logic is presented. The control scheme here presented has been tested using real wave records acquired at the deployment location in Pantelleria Island, which is one of the most energetic sites of the Mediterranean Sea

    On the Limits of Analogy Between Self-Avoidance and Topology-Driven Swelling of Polymer Loops

    Full text link
    The work addresses the analogy between trivial knotting and excluded volume in looped polymer chains of moderate length, N<N0N<N_0, where the effects of knotting are small. A simple expression for the swelling seen in trivially knotted loops is described and shown to agree with simulation data. Contrast between this expression and the well known expression for excluded volume polymers leads to a graphical mapping of excluded volume to trivial knots, which may be useful for understanding where the analogy between the two physical forms is valid. The work also includes description of a new method for the computational generation of polymer loops via conditional probability. Although computationally intensive, this method generates loops without statistical bias, and thus is preferable to other loop generation routines in the region N<N0N<N_0.Comment: 10 pages, 5 figures, supplementary tex file and datafil

    Modeling past and future surface mass balance of the Northern Patagonia Icefield

    Full text link
    Glaciers are strongly retreating and thinning in Patagonia. We present new inferences about the climatic situation and the surface mass balance on the Northern Patagonia Icefield in the past and the future using a combined modeling approach. The simulations are driven by NCAR/NCEP Reanalysis and ECHAM5 data, which were physically downscaled using the Weather Research and Forecasting regional climate model and simple sub-grid parameterizations. The surface mass balance model was calibrated with geodetic mass balance data of three large non-calving glaciers and with point mass balance measurements. An increase of accumulation on the Northern Patagonia Icefield was detected from 1990–2011 as compared to 1975–1990. Using geodetic mass balance data, calving losses from the Northern Patagonia Icefield could be inferred, which doubled in 2000–2009 as compared to 1975–2000. The 21st century projection of future mass balance of the Northern Patagonia Icefield shows a strong increase in ablation from 2050 and a reduction of solid precipitation from 2080, both due to higher temperatures. The total mass loss in the 21st century is estimated to be 592±50 Gt with strongly increasing rates towards the end of the century. The prediction of the future mass balance of the Northern Patagonia Icefield includes several additional sources of errors due to uncertainties in the prediction of future climate and due to possible variations in ice dynamics, which might modify the geometry of the icefield and change the rate of mass losses due to calving

    Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth model

    Get PDF
    Thirty‒one GPS geodetic measurements of crustal uplift in southernmost South America determined extraordinarily high trend rates (> 35 mm/yr) in the north‒central part of the Southern Patagonian Icefield. These trends have a coherent pattern, motivating a refined viscoelastic glacial isostatic adjustment model to explain the observations. Two end‒member models provide good fits: both require a lithospheric thickness of 36.5 ± 5.3 km. However, one end‒member has a mantle viscosity near η =1.6 ×1018 Pa s and an ice collapse rate from the Little Ice Age (LIA) maximum comparable to a lowest recent estimate of 1995–2012 ice loss at about −11 Gt/yr. In contrast, the other end‒member has much larger viscosity: η = 8.0 ×1018 Pa s, half the post–LIA collapse rate, and a steadily rising loss rate in the twentieth century after AD 1943, reaching −25.9 Gt/yr during 1995–2012.Facultad de Ciencias AstronĂłmicas y GeofĂ­sica
    • 

    corecore