7,184 research outputs found

    Quantum Calculation of Inelastic CO Collisions with H. II. Pure Rotational Quenching of High Rotational Levels

    Get PDF
    Carbon monoxide is a simple molecule present in many astrophysical environments, and collisional excitation rate coefficients due to the dominant collision partners are necessary to accurately predict spectral line intensities and extract astrophysical parameters. We report new quantum scattering calculations for rotational deexcitation transitions of CO induced by H using the three-dimensional potential energy surface~(PES) of Song et al. (2015). State-to-state cross sections for collision energies from 105^{-5} to 15,000~cm1^{-1} and rate coefficients for temperatures ranging from 1 to 3000~K are obtained for CO(v=0v=0, jj) deexcitation from j=145j=1-45 to all lower jj' levels, where jj is the rotational quantum number. Close-coupling and coupled-states calculations were performed in full-dimension for jj=1-5, 10, 15, 20, 25, 30, 35, 40, and 45 while scaling approaches were used to estimate rate coefficients for all other intermediate rotational states. The current rate coefficients are compared with previous scattering results using earlier PESs. Astrophysical applications of the current results are briefly discussed.Comment: 8 figures, 1 tabl

    Searches for massive neutrinos with mechanical quantum sensors

    Full text link
    The development of quantum optomechanics now allows mechanical sensors with femtogram masses to be controlled and measured in the quantum regime. If the mechanical element contains isotopes that undergo nuclear decay, measuring the recoil of the sensor following the decay allows reconstruction of the total momentum of all emitted particles, including any neutral particles that may escape detection in traditional detectors. As an example, for weak nuclear decays the momentum of the emitted neutrino can be reconstructed on an event-by-event basis. We present the concept that a single nanometer-scale, optically levitated sensor operated with sensitivity near the standard quantum limit can search for heavy sterile neutrinos in the keV-MeV mass range with sensitivity significantly beyond existing constraints. We also comment on the possibility that mechanical sensors operated well into the quantum regime might ultimately reach the sensitivities required to provide an absolute measurement of the mass of the light neutrino states.Comment: 11 pages + refs, 7 figures. v2: published version (+ an appendix containing a quantum model of the 3-body decay in a nanosphere

    A Cold Nearby Cloud Inside the Local Bubble

    Get PDF
    The high-latitude Galactic H I cloud toward the extragalactic radio source 3C 225 is characterized by very narrow 21 cm emission and absorption indicative of a very low H I spin temperature of about 20 K. Through high-resolution optical spectroscopy, we report the detection of strong, very narrow Na I absorption corresponding to this cloud toward a number of nearby stars. Assuming that the turbulent H I and Na I motions are similar, we derive a cloud temperature of 20 (+6, -8) K (in complete agreement with the 21 cm results) and a line-of-sight turbulent velocity of 0.37+/-0.08 km/s from a comparison of the H I and Na I absorption linewidths. We also place a firm upper limit of 45 pc on the distance of the cloud, which situates it well inside the Local Bubble in this direction and makes it the nearest-known cold diffuse cloud discovered to date.Comment: 11 pages, 3 figures, accepted for publication in ApJ Letter

    Door assembly with shear layer control aperture

    Get PDF
    There is described a vehicle door assembly with shear layer control for controlling the airflow in and around an aperture in the vehicle fuselage. The vehicle door assembly consists of an upper door and a lower door, both slidably mounted to the exterior surface of the vehicle fuselage. In addition, an inner door is slidably mounted beneath the upper door. Beneath the inner door is an aperture assembly having an aperture opening positionable to be substantially flush with the exterior surface of the vehicle fuselage. Also provided are means for positioning the aperture assembly in an upward and downward direction in relation to the vehicle fuselage

    Opioids depress cortical centers responsible for the volitional control of respiration

    Get PDF
    Respiratory depression limits provision of safe opioid analgesia and is the main cause of death in drug addicts. Although opioids are known to inhibit brainstem respiratory activity, their effects on cortical areas that mediate respiration are less well understood. Here, functional magnetic resonance imaging was used to examine how brainstem and cortical activity related to a short breath hold is modulated by the opioid remifentanil. We hypothesized that remifentanil would differentially depress brain areas that mediate sensory-affective components of respiration over those that mediate volitional motor control. Quantitative measures of cerebral blood flow were used to control for hypercapnia-induced changes in blood oxygen level-dependent (BOLD) signal. Awareness of respiration, reflected by an urge-to-breathe score, was profoundly reduced with remifentanil. Urge to breathe was associated with activity in the bilateral insula, frontal operculum, and secondary somatosensory cortex. Localized remifentanil-induced decreases in breath hold-related activity were observed in the left anterior insula and operculum. We also observed remifentanil-induced decreases in the BOLD response to breath holding in the left dorsolateral prefrontal cortex, anterior cingulate, the cerebellum, and periaqueductal gray, brain areas that mediate task performance. Activity in areas mediating motor control (putamen, motor cortex) and sensory-motor integration (supramarginal gyrus) were unaffected by remifentanil. Breath hold-related activity was observed in the medulla. These findings highlight the importance of higher cortical centers in providing contextual awareness of respiration that leads to appropriate modulation of respiratory control. Opioids have profound effects on the cortical centers that control breathing, which potentiates their actions in the brainstem
    corecore