32 research outputs found

    The History of Makassan Trepang Fishing and Trade

    Get PDF
    The Malayan term trepang describes a variety of edible holothurians commonly known as sea cucumbers. Although found in temperate and tropical marine waters all over the world, the centre of species diversity and abundance are the shallow coastal waters of Island Southeast Asia. For at least 300 years, trepang has been a highly priced commodity in the Chinese market. Originally, its fishing and trade was a specialized business, centred on the town of Makassar in South Sulawesi (Indonesia). The rise of trepang fishing in the 17th century added valuable export merchandize to the rich shallow seas surrounding the islands of Southeast Asia. This enabled local communities to become part of large trading networks and greatly supported their economic development. In this article, we follow Makassan trepang fishing and trading from its beginning until the industrialization of the fishery and worldwide depletion of sea cucumbers in the 20th century. Thereby, we identify a number of characteristics which trepang fishing shares with the exploitation of other marine resources, including (1) a strong influence of international markets, (2) the role of patron-client relationships which heavily influence the resource selection, and (3) the roving-bandit-syndrome, where fishermen exploit local stocks of valuable resources until they are depleted, and then move to another area. We suggest that understanding the similarities and differences between historical and recent exploitation of marine resources is an important step towards effective management solutions

    Molecular Phylogeny Restores the Supra-Generic Subdivision of Homoscleromorph Sponges (Porifera, Homoscleromorpha)

    Get PDF
    Homoscleromorpha is the fourth major sponge lineage, recently recognized to be distinct from the Demospongiae. It contains <100 described species of exclusively marine sponges that have been traditionally subdivided into 7 genera based on morphological characters. Because some of the morphological features of the homoscleromorphs are shared with eumetazoans and are absent in other sponges, the phylogenetic position of the group has been investigated in several recent studies. However, the phylogenetic relationships within the group remain unexplored by modern methods.Here we describe the first molecular phylogeny of Homoscleromorpha based on nuclear (18S and 28S rDNA) and complete mitochondrial DNA sequence data that focuses on inter-generic relationships. Our results revealed two robust clades within this group, one containing the spiculate species (genera Plakina, Plakortis, Plakinastrella and Corticium) and the other containing aspiculate species (genera Oscarella and Pseudocorticium), thus rejecting a close relationship between Pseudocorticium and Corticium. Among the spiculate species, we found affinities between the Plakortis and Plakinastrella genera, and between the Plakina and Corticium. The validity of these clades is furthermore supported by specific morphological characters, notably the type of spicules. Furthermore, the monophyly of the Corticium genus is supported while the monophyly of Plakina is not.As the result of our study we propose to restore the pre-1995 subdivision of Homoscleromorpha into two families: Plakinidae Schulze, 1880 for spiculate species and Oscarellidae Lendenfeld, 1887 for aspiculate species that had been rejected after the description of the genus Pseudocorticium. We also note that the two families of homoscleromorphs exhibit evolutionary stable, but have drastically distinct mitochondrial genome organizations that differ in gene content and gene order

    A taxonomic bibliography of the South American snakes of the Crotalus durissus complex (Serpentes, Viperidae)

    Full text link

    XXXI.—The relationships of the Porifera

    No full text
    Volume: 19Start Page: 249End Page: 26

    The sponges of the Leyden Museum. I. The family of the Desmacidinae

    No full text
    Volume: 2Start Page: 99End Page: 16

    Gastrin (G) cells and somatostatin (D) cells in patients with dyspeptic symptoms: Helicobacter pylori associated and non-associated gastritis

    No full text
    Background: Gastrin G cells and somatostatin D cells are important regulators of gastric acid secretion and alterations in their relative numbers may play a key role in gastroduodenal disease. Aim: To investigate the effect of Helicobacter pylori infection on the density of immunoreactive G and D cells in gastric antral and corpus biopsies from patients with dyspeptic complaints. Methods: One hundred and twenty two patients with dyspeptic complaints had two antrum and two corpus biopsies taken during upper endoscopy. The severity of inflammation and the density of H pylori were evaluated semiquantitatively. In addition, the density and distribution of neuroendocrine cells, especially G and D cells, were examined using immunohistochemistry. Patients were divided into three groups, those with H pylori positive gastritis, H pylori negative gastritis, and histologically normal gastric mucosa. Results: The number of immunoreactive G cells was significantly higher and the number of immunoreactive D cells lower in patients with H pylori positive gastritis compared with H pylori negative gastritis or histological normal gastric mucosa. The percentage of G cells as a percentage of mucosal endocrine cells was also raised and that of D cells was decreased. Conclusions: Helicobacter pylori infection produces alterations in the number of endocrine cells responsible for regulating acid secretion in relation to intragastric pH and feeding. The alterations correlate best with the severity of inflammation and not with H pylori density
    corecore