1,125 research outputs found
Resting-state connectivity and functional specialization in human medial parieto-occipital cortex
According to recent models of visuo-spatial processing, the medial parieto-occipital cortex is a crucial node of the dorsal visual stream. Evidence from neurophysiological studies in monkeys has indicated that the parieto-occipital sulcus (POS) contains three functionally and cytoarchitectonically distinct areas: the visual area V6 in the fundus of the POS, and the visuo-motor areas V6Av and V6Ad in a progressively dorsal and anterior location with respect to V6. Besides different topographical organization, cytoarchitectonics, and functional properties, these three monkey areas can also be distinguished based on their patterns of cortico-cortical connections. Thanks to wide-field retinotopic mapping, areas V6 and V6Av have been also mapped in the human brain. Here, using a combined approach of resting-state functional connectivity and task-evoked activity by fMRI, we identified a new region in the anterior POS showing a pattern of functional properties and cortical connections that suggests a homology with the monkey area V6Ad. In addition, we observed distinct patterns of cortical connections associated with the human V6 and V6Av which are remarkably consistent with those showed by the anatomical tracing studies in the corresponding monkey areas. Consistent with recent models on visuo-spatial processing, our findings demonstrate a gradient of functional specialization and cortical connections within the human POS, with more posterior regions primarily dedicated to the analysis of visual attributes useful for spatial navigation and more anterior regions primarily dedicated to analyses of spatial information relevant for goal-directed action
A common neural substrate for processing scenes and egomotion-compatible visual motion
Neuroimaging studies have revealed two separate classes of category-selective regions specialized in optic flow (egomotion-compatible) processing and in scene/place perception. Despite the importance of both optic flow and scene/place recognition to estimate changes in position and orientation within the environment during self-motion, the possible functional link between egomotion- and scene-selective regions has not yet been established. Here we reanalyzed functional magnetic resonance images from a large sample of participants performing two well-known “localizer” fMRI experiments, consisting in passive viewing of navigationally relevant stimuli such as buildings and places (scene/place stimulus) and coherently moving fields of dots simulating the visual stimulation during self-motion (flow fields). After interrogating the egomotion-selective areas with respect to the scene/place stimulus and the scene-selective areas with respect to flow fields, we found that the egomotion-selective areas V6+ and pIPS/V3A responded bilaterally more to scenes/places compared to faces, and all the scene-selective areas (parahippocampal place area or PPA, retrosplenial complex or RSC, and occipital place area or OPA) responded more to egomotion-compatible optic flow compared to random motion. The conjunction analysis between scene/place and flow field stimuli revealed that the most important focus of common activation was found in the dorsolateral parieto-occipital cortex, spanning the scene-selective OPA and the egomotion-selective pIPS/V3A. Individual inspection of the relative locations of these two regions revealed a partial overlap and a similar response profile to an independent low-level visual motion stimulus, suggesting that OPA and pIPS/V3A may be part of a unique motion-selective complex specialized in encoding both egomotion- and scene-relevant information, likely for the control of navigation in a structured environment
Numerical investigation of the mixing of highly viscous liquids with Cowles impellers
This work is aimed at investigating the mixing process of highly viscous paints, used to colour leathers in the tanning industry, through Computational Fluid Dynamics (CFD). In particular, a mixing tank is fed with a master liquid and different liquid pigments and then stirred by Cowles impellers in order to obtain a paint of a uniform colour. The typical dynamic viscosity of the liquids in this process is μ ~ O(0.1-10) Pa·s, while the Cowles rotational speed is usually very high, i.e. 3000-5000 rpm. The numerical model is based on the solution of the unsteady Reynolds-Averaged Navier–Stokes (RANS) equations for continuity, momentum and species mass fractions, the latter being used to describe the different components. The impeller motion is modelled through the Sliding Deforming Mesh (SDM) approach, using rotating (unstructured) meshes in the impeller region and a static (structured) mesh in the remainder of the tank. The master liquid and coloured pigments are assumed to stratify within the tank at initial time and the steady rotational speed is then imposed abruptly to the impellers. The level of homogeneity in the stirred tank is evaluated through the analysis of component concentration fields over time. In particular, such local concentrations can be used to determine the mixture colour in different regions of the tank, and hence predict the degree of homogeneity at different times; this is accomplished by defining a proper homogeneity indicator based on the spatial variance of the estimated colour. The proposed numerical model provides an efficient method to investigate the colour of the mixture and to evaluate an appropriate mixing time. The methodology gives also important indications for the tank design, especially useful in the case of non-conventional impellers, high rotation rates and viscous fluids
Woodchip size effect on combustion temperatures and volatiles in a small-scale fixed bed biomass boiler
Biomass combustion performance is greatly affected by the particle size distribution, which influences heat and mass transport phenomena. The present work investigates the effect of woodchip size distribution on combustion in a 140 kW underfeed stoker boiler. Three different fuel sizes were prepared, and their combustion performance was measured by monitoring temperatures inside and above the fire pit and the gas composition above the fuel bed. The gas composition was then correlated to the particle mean diameter. Although minor effects could be detected in the temperature and composition of the flue gases, a more uniform spatial distribution of volatiles was observed when employing bigger woodchips. The present results can improve the understanding of the impact of fuel size on the performance of woodchip-fired boilers and can be valuably used for numerical model validation
Economics of One Health: Costs and benefits of integrated West Nile virus surveillance in Emilia-Romagna
Since 2013 in Emilia-Romagna, Italy, surveillance information generated in the public health and in the animal health sectors has been shared and used to guide public health interventions to mitigate the risk of West Nile virus (WNV) transmission via blood transfusion. The objective of the current study was to identify and estimate the costs and benefits associated with this One Health surveillance approach, and to compare it to an approach that does not integrate animal health information in blood donations safety policy (uni-sectoral scenario). Costs of human, animal, and entomological surveillance, sharing of information, and triggered interventions were estimated. Benefits were quantified as the averted costs of potential human cases of WNV neuroinvasive disease associated to infected blood transfusion. In the 2009–2015 period, the One Health approach was estimated to represent a cost saving of €160,921 compared to the uni-sectoral scenario. Blood donation screening was the main cost for both scenarios. The One Health approach further allowed savings of €1.21 million in terms of avoided tests on blood units. Benefits of the One Health approach due to short-term costs of hospitalization and compensation for transfusion-associated disease potentially avoided, were estimated to range from €0 to €2.98 million according to the probability of developing WNV neuroinvasive disease after receiving an infected blood transfusion
An Experimental Investigation on the Effect of Exhaust Gas Recirculation in a Small-Scale Fixed Bed Biomass Boiler
Exhaust gas recirculation is a technique that allows for controlling the combustion chamber temperature and reducing the NOx and particle matter emissions. Moreover, it helps to mitigate soot formation and ash agglomeration in combustion systems. The present study investigated the effect of exhaust gas recirculation on combustion temperatures of a 140 kW underfed stoker biomass boiler. To this purpose, a wide range of operating conditions were used, collecting data regarding flue gas and fixed bed temperatures. It turned out that the recirculating ratio has a significant effect on the temperatures in the primary combustion zone, affecting the thermal gradient and the main thermal zones of the biomass combusting bed. The obtained results can be useful for lumped parameter modeling, or CFD validation purposes
Integrated cascade biorefinery processes for the production of single cell oil by Lipomyces starkeyi from Arundo donax L. hydrolysates
Giant reed (Arundo donax L.) is a promising source of carbohydrates that can be converted into single cell oil (SCO) by oleaginous yeasts. Microbial conversion of both hemicellulose and cellulose fractions represents the key step for increasing the economic sustainability for SCO production. Lipomyces starkeyi DSM 70,296 was cultivated in two xylose-rich hydrolysates, obtained by the microwave-assisted hydrolysis of hemicellulose catalysed by FeCl3 or Amberlyst-70, and in two glucose-rich hydrolysates obtained by the enzymatic hydrolysis of cellulose. L. starkeyi grew on both undetoxified and partially-detoxified hydrolysates, achieving the lipid content of 30 wt% and yield values in the range 15–24 wt%. For both integrated cascade processes the final production of about 8 g SCO from 100 g biomass was achieved. SCO production through integrated hydrolysis cascade processes represents a promising solution for the effective exploitation of lignocellulosic feedstock from perennial grasses towards new generation biodiesel and other valuable bio-based products
Chemical Recycling of Polyhydroxybutyrate (PHB) into Bio-Based Solvents and Their Use in a Circular PHB Extraction
Two novel protocols for the chemical valorization of polyhydroxybutyrate (PHB) were developed, aiming at the production of two bio-based molecules: methyl 3-hydroxybutyrate (MHB) and methyl 3-methoxybutyrate (MMB). Optimized reaction conditions were applied to pure PHB and PHB inclusions inside bacterial cells as starting materials. MHB was synthesized through a single-step catalytic methanolysis, while MMB was synthesized through a three-step process: thermolytic distillation to give crotonic acid (CA), esterification to give methyl crotonate (MC), and oxa-Michael addition of MeOH. The obtained MHB and MMB were tested as solvents for the recovery of PHB itself both from freeze-dried single strain cultures (SSC) and mixed microbial cultures (MMC) with low to medium contents of PHB (22-57 wt %). High PHB recovery was achieved: up to 96 ± 1% through MHB and up to 98 ± 1% through MMB. Extraction from MMC slurry (with a PHB content of 39% on dry weight) was also performed, recovering 77 ± 2% using MHB and 92 ± 2% using MMB. High purities and excellent molecular weights and polydispersity indexes of extracted PHB were obtained with both MHB and MMB. Solubility in water, octanol/water partition coefficients (log Kow), and aerobic ready biodegradability of both solvents were also evaluated
- …