56 research outputs found

    Quantification of the Temporal Evolution of Collagen Orientation in Mechanically Conditioned Engineered Cardiovascular Tissues

    Get PDF
    Load-bearing soft tissues predominantly consist of collagen and exhibit anisotropic, non-linear visco-elastic behavior, coupled to the organization of the collagen fibers. Mimicking native mechanical behavior forms a major goal in cardiovascular tissue engineering. Engineered tissues often lack properly organized collagen and consequently do not meet in vivo mechanical demands. To improve collagen architecture and mechanical properties, mechanical stimulation of the tissue during in vitro tissue growth is crucial. This study describes the evolution of collagen fiber orientation with culture time in engineered tissue constructs in response to mechanical loading. To achieve this, a novel technique for the quantification of collagen fiber orientation is used, based on 3D vital imaging using multiphoton microscopy combined with image analysis. The engineered tissue constructs consisted of cell-seeded biodegradable rectangular scaffolds, which were either constrained or intermittently strained in longitudinal direction. Collagen fiber orientation analyses revealed that mechanical loading induced collagen alignment. The alignment shifted from oblique at the surface of the construct towards parallel to the straining direction in deeper tissue layers. Most importantly, intermittent straining improved and accelerated the alignment of the collagen fibers, as compared to constraining the constructs. Both the method and the results are relevant to create and monitor load-bearing tissues with an organized anisotropic collagen network

    Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators

    Get PDF
    We engineered functional cardiac patches by seeding neonatal rat cardiomyocytes onto carbon nanotube (CNT)-incorporated photo-cross-linkable gelatin methacrylate (GelMA) hydrogels. The resulting cardiac constructs showed excellent mechanical integrity and advanced electrophysiological functions. Specifically, myocardial tissues cultured on 50 μm thick CNT-GelMA showed 3 times higher spontaneous synchronous beating rates and 85% lower excitation threshold, compared to those cultured on pristine GelMA hydrogels. Our results indicate that the electrically conductive and nanofibrous networks formed by CNTs within a porous gelatin framework are the key characteristics of CNT-GelMA leading to improved cardiac cell adhesion, organization, and cell–cell coupling. Centimeter-scale patches were released from glass substrates to form 3D biohybrid actuators, which showed controllable linear cyclic contraction/extension, pumping, and swimming actuations. In addition, we demonstrate for the first time that cardiac tissues cultured on CNT-GelMA resist damage by a model cardiac inhibitor as well as a cytotoxic compound. Therefore, incorporation of CNTs into gelatin, and potentially other biomaterials, could be useful in creating multifunctional cardiac scaffolds for both therapeutic purposes and in vitro studies. These hybrid materials could also be used for neuron and other muscle cells to create tissue constructs with improved organization, electroactivity, and mechanical integrity.United States. Army Research Office. Institute for Soldier NanotechnologiesNational Institutes of Health (U.S.) (HL092836)National Institutes of Health (U.S.) (EB02597)National Institutes of Health (U.S.) (AR057837)National Institutes of Health (U.S.) (HL099073)National Science Foundation (U.S.) (DMR0847287)United States. Office of Naval Research (ONR PECASE Award)United States. Office of Naval Research (Young Investigator award)National Research Foundation of Korea (grant (NRF-2010-220-D00014)

    Effect of Strain Magnitude on the Tissue Properties of Engineered Cardiovascular Constructs

    Get PDF
    Mechanical loading is a powerful regulator of tissue properties in engineered cardiovascular tissues. To ultimately regulate the biochemical processes, it is essential to quantify the effect of mechanical loading on the properties of engineered cardiovascular constructs. In this study the Flexercell FX-4000T (Flexcell Int. Corp., USA) straining system was modified to simultaneously apply various strain magnitudes to individual samples during one experiment. In addition, porous polyglycolic acid (PGA) scaffolds, coated with poly-4-hydroxybutyrate (P4HB), were partially embedded in a silicone layer to allow long-term uniaxial cyclic mechanical straining of cardiovascular engineered constructs. The constructs were subjected to two different strain magnitudes and showed differences in biochemical properties, mechanical properties and organization of the microstructure compared to the unstrained constructs. The results suggest that when the tissues are exposed to prolonged mechanical stimulation, the production of collagen with a higher fraction of crosslinks is induced. However, straining with a large strain magnitude resulted in a negative effect on the mechanical properties of the tissue. In addition, dynamic straining induced a different alignment of cells and collagen in the superficial layers compared to the deeper layers of the construct. The presented model system can be used to systematically optimize culture protocols for engineered cardiovascular tissues

    Combinatorial Polymer Electrospun Matrices Promote Physiologically-Relevant Cardiomyogenic Stem Cell Differentiation

    Get PDF
    Myocardial infarction results in extensive cardiomyocyte death which can lead to fatal arrhythmias or congestive heart failure. Delivery of stem cells to repopulate damaged cardiac tissue may be an attractive and innovative solution for repairing the damaged heart. Instructive polymer scaffolds with a wide range of properties have been used extensively to direct the differentiation of stem cells. In this study, we have optimized the chemical and mechanical properties of an electrospun polymer mesh for directed differentiation of embryonic stem cells (ESCs) towards a cardiomyogenic lineage. A combinatorial polymer library was prepared by copolymerizing three distinct subunits at varying molar ratios to tune the physicochemical properties of the resulting polymer: hydrophilic polyethylene glycol (PEG), hydrophobic poly(ε-caprolactone) (PCL), and negatively-charged, carboxylated PCL (CPCL). Murine ESCs were cultured on electrospun polymeric scaffolds and their differentiation to cardiomyocytes was assessed through measurements of viability, intracellular reactive oxygen species (ROS), α-myosin heavy chain expression (α-MHC), and intracellular Ca2+ signaling dynamics. Interestingly, ESCs on the most compliant substrate, 4%PEG-86%PCL-10%CPCL, exhibited the highest α-MHC expression as well as the most mature Ca2+ signaling dynamics. To investigate the role of scaffold modulus in ESC differentiation, the scaffold fiber density was reduced by altering the electrospinning parameters. The reduced modulus was found to enhance α-MHC gene expression, and promote maturation of myocyte Ca2+ handling. These data indicate that ESC-derived cardiomyocyte differentiation and maturation can be promoted by tuning the mechanical and chemical properties of polymer scaffold via copolymerization and electrospinning techniques

    Heart Valve Tissue Engineering: Concepts, Approaches, Progress, and Challenges

    Get PDF
    Potential applications of tissue engineering in regenerative medicine range from structural tissues to organs with complex function. This review focuses on the engineering of heart valve tissue, a goal which involves a unique combination of biological, engineering, and technological hurdles. We emphasize basic concepts, approaches and methods, progress made, and remaining challenges. To provide a framework for understanding the enabling scientific principles, we first examine the elements and features of normal heart valve functional structure, biomechanics, development, maturation, remodeling, and response to injury. Following a discussion of the fundamental principles of tissue engineering applicable to heart valves, we examine three approaches to achieving the goal of an engineered tissue heart valve: (1) cell seeding of biodegradable synthetic scaffolds, (2) cell seeding of processed tissue scaffolds, and (3) in-vivo repopulation by circulating endogenous cells of implanted substrates without prior in-vitro cell seeding. Lastly, we analyze challenges to the field and suggest future directions for both preclinical and translational (clinical) studies that will be needed to address key regulatory issues for safety and efficacy of the application of tissue engineering and regenerative approaches to heart valves. Although modest progress has been made toward the goal of a clinically useful tissue engineered heart valve, further success and ultimate human benefit will be dependent upon advances in biodegradable polymers and other scaffolds, cellular manipulation, strategies for rebuilding the extracellular matrix, and techniques to characterize and potentially non-invasively assess the speed and quality of tissue healing and remodeling

    Living Bacterial Sacrificial Porogens to Engineer Decellularized Porous Scaffolds

    Get PDF
    Decellularization and cellularization of organs have emerged as disruptive methods in tissue engineering and regenerative medicine. Porous hydrogel scaffolds have widespread applications in tissue engineering, regenerative medicine and drug discovery as viable tissue mimics. However, the existing hydrogel fabrication techniques suffer from limited control over pore interconnectivity, density and size, which leads to inefficient nutrient and oxygen transport to cells embedded in the scaffolds. Here, we demonstrated an innovative approach to develop a new platform for tissue engineered constructs using live bacteria as sacrificial porogens. E.coli were patterned and cultured in an interconnected three-dimensional (3D) hydrogel network. The growing bacteria created interconnected micropores and microchannels. Then, the scafold was decellularized, and bacteria were eliminated from the scaffold through lysing and washing steps. This 3D porous network method combined with bioprinting has the potential to be broadly applicable and compatible with tissue specific applications allowing seeding of stem cells and other cell types

    Form Follows Function: Advances in Trilayered Structure Replication for Aortic Heart Valve Tissue Engineering

    Full text link

    Tissue-Engineered Heart Valves

    No full text
    A tissue engineered heart valve (TEHV) could serve as a living, implantable valve replacement that would grow and adapt with the patient. A TEHV consists of relevant cells seeded on or entrapped in a scaffold material which is designed to degrade as the cells produce their own extracellular matrix components. Because the valve consists of living tissue, it can grow and remodel as a patient ages, making it an especially attractive replacement option for pediatric and young adult patients. To date, using various cell sources, scaffold materials, and/or in vitro culture protocols, several laboratories have produced TEHVs with the appropriate geometry and near-native mechanical properties. TEHVs implanted in the pulmonary position in sheep in our laboratory have shown promising short-term functionality but fail to maintain good performance after several months in vivo. Upcoming TEHV research will focus on optimization of TEHV components and in vitro culture conditions in order to improve long-term function post-implant, with the hope of performing human implants in the future
    corecore