36,260 research outputs found

    The Non-Mesonic Weak Decay of Double-Lambda Hypernuclei: A Microscopic Approach

    Get PDF
    The non--mesonic weak decay of double--Λ\Lambda hypernuclei is studied within a microscopic diagrammatic approach. Besides the nucleon--induced mechanism, ΛN→nN\Lambda N\to nN, widely studied in single--Λ\Lambda hypernuclei, additional hyperon--induced mechanisms, ΛΛ→Λn\Lambda \Lambda\to \Lambda n, ΛΛ→Σ0n\Lambda \Lambda\to \Sigma^0 n and ΛΛ→Σ−p\Lambda \Lambda\to \Sigma^-p, are accessible in double--Λ\Lambda hypernuclei and are investigated here. As in previous works on single--Λ\Lambda hypernuclei, we adopt a nuclear matter formalism extended to finite nuclei via the local density approximation and a one--meson exchange weak transition potential (including the ground state pseudoscalar and vector octets mesons) supplemented by correlated and uncorrelated two--pion--exchange contributions. The weak decay rates are evaluated for hypernuclei in the region of the experimentally accessible light hypernuclei ΛΛ10^{10}_{\Lambda\Lambda}Be and ΛΛ13^{13}_{\Lambda\Lambda}B. Our predictions are compared with a few previous evaluations. The rate for the ΛΛ→Λn\Lambda \Lambda\to \Lambda n decay is dominated by KK--, K∗K^*-- and η\eta--exchange and turns out to be about 2.5\% of the free Λ\Lambda decay rate, ΓΛfree\Gamma_{\Lambda}^{\rm free}, while the total rate for the ΛΛ→Σ0n\Lambda \Lambda\to \Sigma^0 n and ΛΛ→Σ−p\Lambda \Lambda\to \Sigma^- p decays, dominated by π\pi--exchange, amounts to about 0.25\% of ΓΛfree\Gamma_{\Lambda}^{\rm free}. The experimental measurement of these decays would be essential for the beginning of a systematic study of the non--mesonic decay of strangeness −2-2 hypernuclei. This field of research could also shed light on the possible existence and nature of the HH--dibaryon.Comment: 17 pages, 2 figure

    Soft-Collinear Messengers: A New Mode in Soft-Collinear Effective Theory

    Full text link
    It is argued that soft-collinear effective theory for processes involving both soft and collinear partons, such as exclusive B-meson decays, should include a new mode in addition to soft and collinear fields. These "soft-collinear messengers" can interact with both soft and collinear particles without taking them far off-shell. They thus can communicate between the soft and collinear sectors of the theory. The relevance of the new mode is demonstrated with an explicit example, and the formalism incorporating the corresponding quark and gluon fields into the effective Lagrangian is developed.Comment: 22 pages, 5 figures. Extended Section 6, clarifying the relevance of different types of soft-collinear interaction

    Phase Transitions in a Two-Component Site-Bond Percolation Model

    Full text link
    A method to treat a N-component percolation model as effective one component model is presented by introducing a scaled control variable p+p_{+}. In Monte Carlo simulations on 16316^{3}, 32332^{3}, 64364^{3} and 1283128^{3} simple cubic lattices the percolation threshold in terms of p+p_{+} is determined for N=2. Phase transitions are reported in two limits for the bond existence probabilities p=p_{=} and p≠p_{\neq}. In the same limits, empirical formulas for the percolation threshold p+cp_{+}^{c} as function of one component-concentration, fbf_{b}, are proposed. In the limit p==0p_{=} = 0 a new site percolation threshold, fbc≃0.145f_{b}^{c} \simeq 0.145, is reported.Comment: RevTeX, 5 pages, 5 eps-figure

    Combination of a magnetic Feshbach resonance and an optical bound-to-bound transition

    Full text link
    We use laser light near resonant with an optical bound-to-bound transition to shift the magnetic field at which a Feshbach resonance occurs. We operate in a regime of large detuning and large laser intensity. This reduces the light-induced atom-loss rate by one order of magnitude compared to our previous experiments [D.M. Bauer et al. Nature Phys. 5, 339 (2009)]. The experiments are performed in an optical lattice and include high-resolution spectroscopy of excited molecular states, reported here. In addition, we give a detailed account of a theoretical model that describes our experimental data

    Power Counting in the Soft-Collinear Effective Theory

    Full text link
    We describe in some detail the derivation of a power counting formula for the soft-collinear effective theory (SCET). This formula constrains which operators are required to correctly describe the infrared at any order in the Lambda_QCD/Q expansion (lambda expansion). The result assigns a unique lambda-dimension to graphs in SCET solely from vertices, is gauge independent, and can be applied independent of the process. For processes with an OPE the lambda-dimension has a correspondence with dynamical twist.Comment: 12 pages, 1 fig, journal versio

    Enhanced nonperturbative effects in jet distributions

    Get PDF
    We consider the triple differential distribution d\Gamma/(dE_J)(dm_J^2)(d\Omega_J) for two-jet events at center of mass energy M, smeared over the endpoint region m_J^2 << M^2, |2 E_J -M| ~ \Delta, \lqcd << \Delta << M. The leading nonperturbative correction, suppressed by \lqcd/\Delta, is given by the matrix element of a single operator. A similar analysis is performed for three jet events, and the generalization to any number of jets is discussed. At order \lqcd/\Delta, non-perturbative effects in four or more jet events are completely determined in terms of two matrix elements which can be measured in two and three jet events.Comment: Significant changes made. The first moment does not vanish--the paper has been modified to reflect this. Relations between different numbers of jets still hol
    • …
    corecore