74,049 research outputs found
Once-ionized helium in superstrong magnetic fields
It is generally believed that magnetic fields of some neutron stars, the
so-called magnetars, are enormously strong, up to 10^{14} - 10^{15} G. Recent
investigations have shown that the atmospheres of magnetars are possibly
composed of helium. We calculate the structure and bound-bound radiative
transitions of the He^+ ion in superstrong fields, including the effects caused
by the coupling of the ion's internal degrees of freedom to its center-of-mass
motion. We show that He^+ in superstrong magnetic fields can produce spectral
lines with energies of up to about 3 keV, and it may be responsible for
absorption features detected recently in the soft X-ray spectra of several
radio-quiet isolated neutron stars. Quantization of the ion's motion across a
magnetic field results in a fine structure of spectral lines, with a typical
spacing of tens electron-volts in magnetar-scale fields. It also gives rise to
ion cyclotron transitions, whose energies and oscillator strengths depend on
the state of the bound ion.Comment: 12 pages, including 3 figures. Submitted to ApJ Letters (revised
version
A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations: Validation and model problems
An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction
Now You’ll Have Something To Cry About
Runner-up, Barry Hannah Prize for Fictio
Robustness of the Thirty Meter Telescope Primary Mirror Control System
The primary mirror control system for the Thirty Meter Telescope (TMT) maintains the alignment of the 492 segments in the presence of both quasi-static (gravity and thermal) and dynamic disturbances due to unsteady wind loads. The latter results in a desired control bandwidth of 1Hz at high spatial frequencies. The achievable bandwidth is limited by robustness to (i) uncertain telescope structural dynamics (control-structure interaction) and (ii) small perturbations in the ill-conditioned influence matrix that relates segment edge sensor response to actuator commands. Both of these effects are considered herein using models of TMT. The former is explored through multivariable sensitivity analysis on a reduced-order Zernike-basis representation of the structural dynamics. The interaction matrix ("A-matrix") uncertainty has been analyzed theoretically elsewhere, and is examined here for realistic amplitude perturbations due to segment and sensor installation errors, and gravity and thermal induced segment motion. The primary influence of A-matrix uncertainty is on the control of "focusmode"; this is the least observable mode, measurable only through the edge-sensor (gap-dependent) sensitivity to the dihedral angle between segments. Accurately estimating focus-mode will require updating the A-matrix as a function of the measured gap. A-matrix uncertainty also results in a higher gain-margin requirement for focus-mode, and hence the A-matrix and CSI robustness need to be understood simultaneously. Based on the robustness analysis, the desired 1 Hz bandwidth is achievable in the presence of uncertainty for all except the lowest spatial-frequency response patterns of the primary mirror
R-Mode Oscillations and Spindown of Young Rotating Magnetic Neutron Stars
Recent work has shown that a young, rapidly rotating neutron star loses
angular momentum to gravitational waves generated by unstable r-mode
oscillations. We study the spin evolution of a young, magnetic neutron star
including both the effects of gravitational radiation and magnetic braking
(modeled as magnetic dipole radiation). Our phenomenological description of
nonlinear r-modes is similar to, but distinct from, that of Owen et al. (1998)
in that our treatment is consistent with the principle of adiabatic invariance
in the limit when direct driving and damping of the mode are absent. We show
that, while magnetic braking tends to increase the r-mode amplitude by spinning
down the neutron star, it nevertheless reduces the efficiency of gravitational
wave emission from the star. For B >= 10^14 (\nus/300 Hz)^2 G, where \nus is
the spin frequency, the spindown rate and the gravitational waveforms are
significantly modified by the effect of magnetic braking. We also estimate the
growth rate of the r-mode due to electromagnetic (fast magnetosonic) wave
emission and due to Alfven wave emission in the neutron star magnetosphere. The
Alfven wave driving of the r-mode becomes more important than the gravitational
radiation driving when B >= 10^13 (\nus/150 Hz)^3 G; the electromagnetic wave
driving of the r-mode is much weaker. Finally, we study the properties of local
Rossby-Alfven waves inside the neutron star and show that the fractional change
of the r-mode frequency due to the magnetic field is of order 0.5 (B/10^16 G)^2
(\nus/100 Hz)^-2.Comment: 18 pages, 4 figures; ApJ, accepted (v544: Nov 20, 2000); added two
footnotes and more discussion of mode driving by Alfven wave
Gamma-ray Burst Afterglow with Continuous Energy Injection: Signature of a Highly-Magnetized Millisecond Pulsar
We investigate the consequences of a continuously injecting central engine on
the gamma-ray burst afterglow emission, focusing more specifically on a
highly-magnetized millisecond pulsar engine. For initial pulsar parameters
within a certain region of the parameter space, the afterglow lightcurves are
predicted to show a distinctive achromatic bump feature, the onset and duration
of which range from minutes to months, depending on the pulsar and the fireball
parameters. The detection of or upper limits on such features would provide
constraints on the burst progenitor and on magnetar-like central engine models.
An achromatic bump such as that in GRB 000301C afterglow may be caused by a
millisecond pulsar with P0=3.4 millisecond and Bp=2.7e14 Gauss.Comment: 5 pages, emulateapj style, to appear in ApJ Letters, updated with the
accepted version, a few corrections are mad
Instability of Quark Matter Core in a Compact Newborn Neutron Star With Moderately Strong Magnetic Field
It is explicitly shown that if phase transition occurs at the core of a
newborn neutron star with moderately strong magnetic field strength, which
populates only the electron's Landau levels, then in the -equilibrium
condition, the quark core is energetically much more unstable than the neutron
matter of identical physical condition.Comment: Six pages REVTEX file, one .eps file (included
Neutron star matter in the quark-meson coupling model in strong magnetic fields
The effects of strong magnetic fields on neutron star matter are investigated
in the quark-meson coupling (QMC) model. The QMC model describes a nuclear
many-body system as nonoverlapping MIT bags in which quarks interact through
self-consistent exchange of scalar and vector mesons in the mean-field
approximation. The results of the QMC model are compared with those obtained in
a relativistic mean-field (RMF) model. It is found that quantitative
differences exist between the QMC and RMF models, while qualitative trends of
the magnetic field effects on the equation of state and composition of neutron
star matter are very similar.Comment: 16 pages, 4 figure
Diffuse gamma radiation
An examination of the intensity, energy spectrum, and spatial distribution of the diffuse gamma-radiation observed by SAS-2 satellite away from the galactic plane in the energy range above 35 MeV has shown that it consists of two components. One component is generally correlated with galactic latitudes, the atomic hydrogen column density was deduced from 21 cm measurements, and the continuum radio emission, believed to be synchrotron emission. It has an energy spectrum similar to that in the plane and joins smoothly to the intense radiation from the plane. It is therefore presumed to be of galactic origin. The other component is apparently isotropic, at least on a coarse scale, and has a steep energy spectrum. No evidence is found for a cosmic ray halo surrounding the galaxy in the shape of a sphere or oblate spheroid with galactic dimensions. Constraints for a halo model with significantly larger dimensions are set on the basis of an upper limit to the gamma-ray anisotropy
Consistency of pacing and metabolic responses during 2000-m rowing ergometry
PURPOSE: This study investigated the pacing strategy adopted and the consistency of performance and related physiological parameters across three 2000-m rowing-ergometer tests.
METHODS: Fourteen male well-trained rowers took part in the study. Each participant performed three 2000-m rowing-ergometer tests interspersed by 3-7 d. Throughout the trials, respiratory exchange and heart rate were recorded and power output and stroke rate were analyzed over each 500 m of the test. At the completion of the trial, assessments of blood lactate and rating of perceived exertion were measured.
RESULTS: Ergometer performance was unchanged across the 3 trials; however, pacing strategy changed from trial 1, which featured a higher starting power output and more progressive decrease in power, to trials 2 and 3, which were characterized by a more conservative start and an end spurt with increased power output during the final 500 m. Mean typical error (TE; %) across the three 2000-m trials was 2.4%, and variability was low to moderate for all assessed physiological variables (TE range = 1.4-5.1%) with the exception of peak lactate (TE = 11.5%).
CONCLUSIONS: Performance and physiological responses during 2000-m rowing ergometry were found to be consistent over 3 trials. The variations observed in pacing strategy between trial 1 and trials 2 and 3 suggest that a habituation trial is required before an intervention study and that participants move from a positive to a reverse-J-shaped strategy, which may partly explain conflicting reports in the pacing strategy exhibited during 2000-m rowing-ergometer trials
- …