3,609 research outputs found

    M51's spiral structure

    Get PDF
    The M51 system (NGC 5194/5195) provides an excellent problem both in spiral structure and in galaxy interactions. The authors present an analytic study of a computer experiment on the excitation mechanisms for M51's spiral arms and whether or not a halo is important for these mechanisms. This work extends previous numerical studies of the M51 system by including self-gravitation in a two component disk: gas and stars, and a dark halo. The analytic study provides two new observational constraints: the time (approx. 70 to 84 million years ago) and position angle of perigalacticon (300 degrees). By using these constraints and a simple conic approximation, the search for the companion's possible orbit is greatly simplified. This requires fewer N-body simulations than a fully self-gravitating orbit search

    The spiral-compact galaxy pair AM 2208-251: Computer simulations versus observations

    Get PDF
    The system AM2208-251 is a roughly edge-on spiral extending east-west with a smaller round compact E system about 60 arcsec east of the spiral nucleus along the major axis of the spiral. Bertola, Huchtmeier, and Zeilinger (1990) have presented optical spectroscopic as well as single dish 21 cm observations of this system. Their spectroscopic data show, via emission lines lambda lambda 3727-29A, a rising rotation curve near the nucleus. These spectroscopic observations may indicate a tidal interaction in the system. In order to learn more about such pairs, the authors simulated the interaction using the computer model developed by Miller (1976 a,b, 1978) and modified by the authors (Byrd 1986, 1987, 1988). To do the simulation they need an idea of the mutual orbits of the two galaxies. Their computer model is a two-dimensional polar N-body program. It consists of a self-gravitating disk of particles, within an inert axially symmetric stabilizing halo potential. The particles are distributed in a 24(radial) by 36(azimuthal) polar grid. Self consistent calculations can be done only within the grid area. The disk is modeled with a finite Mestel disk, where all the particles initially move in circular orbits with constant tangential velocities (Mestel 1963), resulting in a flat rotation curve. The gas particles in the spiral's disk, which make up 30 percent of its mass, collide in the following manner. The number of particles in each bin of the polar grid is counted every time step. If it is greater than a given critical density, all the particles in the bin collide, obtaining in the result the same velocities, equal to the average for the bin. This process produces clumps of gas particles-the star formation sites. The authors suppress the collision in the inner part of the disk (within the circle r = 6) to represent the hole seen in the gas in the nuclear bulge of spirals. They thus avoid spurious effects due to collisions in that region. They also varied the size of the collisional bins, which did not affect their conclusions

    SU(3) Revisited

    Get PDF
    The ``DD'' matrices for all states of the two fundamental representations and octet are shown in the generalized Euler angle parameterization. The raising and lowering operators are given in terms of linear combinations of the left invariant vector fields of the group manifold in this parameterization. Using these differential operators the highest weight state of an arbitrary irreducible representation is found and a description of the calculation of Clebsch-Gordon coefficients is given.Comment: 22 pages LaTe

    Phonological Priming In Young Children Who Stutter: Holistic Versus Incremental Processing

    Get PDF
    Purpose: To investigate the holistic versus incremental phonological encoding processes of young children who stutter (CWS; N = 26) and age- and gender-matched children who do not stutter (CWNS; N = 26) via a picture-naming auditory priming paradigm. Method: Children named pictures during 3 auditory priming conditions: neutral, holistic, and incremental. Speech reaction time (SRT) was measured from the onset of picture presentation to the onset of participant response. Results: CWNS shifted from being significantly faster in the holistic priming condition to being significantly faster in the incremental priming condition from 3 to 5 years of age. In contrast, the majority of 3- and 5-year-old CWS continued to exhibit faster SRT in the holistic than the incremental condition. Conclusion: CWS are delayed in making the developmental shift in phonological encoding from holistic to incremental processing, a delay that may contribute to their difficulties establishing fluent speech.Communication Sciences and Disorder

    The Law School

    Get PDF

    Actual Causation in North Carolina Tort Law

    Get PDF

    Recovery for Mental Anguish in North Carolina

    Get PDF

    No-Fault for North Carolina -- A Pending Proposal

    Get PDF
    corecore