1,705 research outputs found

    Regular two-component bouncing cosmologies and perturbations therein

    Full text link
    We present a full investigation of scalar perturbations in a rather generic model for a regular bouncing universe, where the bounce is triggered by an effective perfect fluid with negative energy density. Long before and after the bounce the universe is dominated by a source with positive energy density, which may be a perfect fluid, a scalar field, or any other source with an intrinsic isocurvature perturbation. Within this framework, we present an analytical method to accurately estimate the spectrum of large-scale scalar perturbations until their reentry, long after the bounce. We also propose a simple way to identify non-singular gauge-invariant variables through the bounce and present the results of extensive numerical tests in several possible realizations of the scenario. In no case do we find that the spectrum of the pre-bounce growing mode of the Bardeen potential can be transferred to a post-bounce constant mode.Comment: 19 pages, 9 figure

    Scalar perturbations in regular two-component bouncing cosmologies

    Full text link
    We consider a two-component regular cosmology bouncing from contraction to expansion, where, in order to include both scalar fields and perfect fluids as particular cases, the dominant component is allowed to have an intrinsic isocurvature mode. We show that the spectrum of the growing mode of the Bardeen potential in the pre-bounce is never transferred to the dominant mode of the post-bounce. The latter acquires at most a dominant isocurvature component, depending on the relative properties of the two fluids. Our results imply that several claims in the literature need substantial revision.Comment: 10 pages, 1 figur

    Relativistic iron lines in accretion disks: the contribution of higher order images in the strong deflection limit

    Full text link
    The shapes of relativistic iron lines observed in spectra of candidate black holes carry the signatures of the strong gravitational fields in which the accretion disks lie. These lines result from the sum of the contributions of all images of the disk created by gravitational lensing, with the direct and first-order images largely dominating the overall shapes. Higher order images created by photons tightly winding around the black holes are often neglected in the modeling of these lines, since they require a substantially higher computational effort. With the help of the strong deflection limit, we present the most accurate semi-analytical calculation of these higher order contributions to the iron lines for Schwarzschild black holes. We show that two regimes exist depending on the inclination of the disk with respect to the line of sight. Many useful analytical formulae can be also derived in this framework.Comment: 23 pages, 13 figure

    Scalar fluctuations in dilatonic brane-worlds

    Get PDF
    We derive and solve the full set of scalar perturbation equations for a class of five-dimensional brane--world solutions, with a dilaton scalar field coupled to the bulk cosmological constant and to a 3-brane. The spectrum contains one localized massless scalar mode, to be interpreted as an effective dilaton on the brane, inducing long--range scalar interactions. Two massive scalar modes yield corrections to Newton's law at short distances, which persist even in the limit of vanishing dilaton (namely, in the standard Randall--Sundrum configuration).Comment: 10 pages. Talk presented by V. Bozza at COSMO-01 conference, Rovaniemi, 200

    Neutrino Oscillations in Caianiello's Quantum Geometry Model

    Get PDF
    Neutrino flavor oscillations are analyzed in the framework of Quantum Geometry model proposed by Caianiello. In particular, we analyze the consequences of the model for accelerated neutrino particles which experience an effective Schwarzschild geometry modified by the existence of an upper limit on the acceleration, which implies a violation of the equivalence principle. We find a shift of quantum mechanical phase of neutrino oscillations, which depends on the energy of neutrinos as E^3. Implications on atmospheric and solar neutrinos are discussed.Comment: 11 page

    Maximal Acceleration Effects in Kerr Space

    Get PDF
    We consider a model in which accelerated particles experience line--elements with maximal acceleration corrections that are introduced by means of successive approximations. It is shown that approximations higher than the first need not be considered. The method is then applied to the Kerr metric. The effective field experienced by accelerated test particles contains corrections that vanish in the limit ℏ→0\hbar\to 0, but otherwise affect the behaviour of matter greatly. The corrections generate potential barriers that are external to the horizon and are impervious to classical particles.Comment: 16 pages, 10 figures, to appear on Phys. Lett.

    Assisting pre-big bang phenomenology through short-lived axions

    Full text link
    We present the results of a detailed study of how isocurvature axion fluctuations are converted into adiabatic metric perturbations through axion decay, and discuss the constraints on the parameters of pre-big bang cosmology needed for consistency with present CMB-anisotropy data. The large-scale normalization of temperature fluctuations has a non-trivial dependence both on the mass and on the initial value of the axion. In the simplest, minimal models of pre-big bang inflation, consistency with the COBE normalization requires a slightly tilted (blue) spectrum, while a strictly scale-invariant spectrum requires mild modifications of the minimal backgrounds at large curvature and/or string coupling.Comment: 14 pages, latex, 1 figure included using epsfig. A few typos corrected, two references added, the figure slightly improved. To appear in Phys. Lett.

    Constraints on pre-big bang parameter space from CMBR anisotropies

    Get PDF
    The so-called curvaton mechanism --a way to convert isocurvature perturbations into adiabatic ones-- is investigated both analytically and numerically in a pre-big bang scenario where the role of the curvaton is played by a sufficiently massive Kalb--Ramond axion of superstring theory. When combined with observations of CMBR anisotropies at large and moderate angular scales, the present analysis allows us to constrain quite considerably the parameter space of the model: in particular, the initial displacement of the axion from the minimum of its potential and the rate of evolution of the compactification volume during pre-big bang inflation. The combination of theoretical and experimental constraints favours a slightly blue spectrum of scalar perturbations, and/or a value of the string scale in the vicinity of the SUSY-GUT scale.Comment: 63 pages in Latex style with 14 figures include

    Analytic Kerr black hole lensing for equatorial observers in the strong deflection limit

    Full text link
    In this paper we present an analytical treatment of gravitational lensing by Kerr black holes in the limit of very large deflection angles, restricting to observers in the equatorial plane. We accomplish our objective starting from the Schwarzschild black hole and adding corrections up to second order in the black hole spin. This is sufficient to provide a full description of all caustics and the inversion of lens mapping for sources near them. On the basis of these formulae we argue that relativistic images of Low Mass X-ray Binaries around Sgr A* are very likely to be seen by future X-ray interferometry missions.Comment: 19 pages, 9 figures, published on Phys. Rev.
    • …
    corecore