5,550 research outputs found
Metal-rich T-dwarfs in the Hyades cluster
We present the results of a search for brown dwarfs (BDs) and very low mass
(VLM) stars in the 625 Myr-old, metal-rich ([Fe/H]=0.14) Hyades cluster. We
performed a deep (I=23, z=22.5) photometric survey over 16 deg around the
cluster center. We report the discovery of the first 2 BDs in the Hyades
cluster, with a spectral type T1 and T2, respectively. Their optical and
near-IR photometry, as well as their proper motion, are consistent with them
being cluster members. According to models, their mass is about 50 Jupiter
masses at an age of 625 Myr. We also report the discovery of 3 new very low
mass stellar members and confirm the membership of 15 others
Diamagnetic Blob Interaction Model of T Tauri Variability
Assuming a diamagnetic interaction between a stellar-spot originated
localized magnetic field and gas blobs in the accretion disk around a T- Tauri
star, we show the possibility of ejection of such blobs out of the disk plane.
Choosing the interaction radius and the magnetic field parameters in a suitable
way gives rise to closed orbits for the ejected blobs. A stream of matter
composed of such blobs, ejected on one side of the disk and impacting on the
other, can form a hot spot at a fixed position on the disk (in the frame
rotating with the star). Such a hot spot, spread somewhat by disk shear before
cooling, may be responsible in some cases for the lightcurve variations
observed in various T-Tauri stars over the years. An eclipse-based mechanism
due to stellar obscuration of the spot is proposed. Assuming high disk
inclination angles it is able to explain many of the puzzling properties of
these variations. By varying the field parameters and blob initial conditions
we obtain variations in the apparent angular velocity of the hot spot,
producing a constantly changing period or intermittent periodicity
disappearance in the models.Comment: 6 pages, 4 figures, aas2pp4 styl
MHD simulations of disk-star interaction
We discuss a number of topics relevant to disk-magnetosphere interaction and
how numerical simulations illuminate them. The topics include: (1)
disk-magnetosphere interaction and the problem of disk-locking; (2) the wind
problem; (3) structure of the magnetospheric flow, hot spots at the star's
surface, and the inner disk region; (4) modeling of spectra from 3D funnel
streams; (5) accretion to a star with a complex magnetic field; (6) accretion
through 3D instabilities; (7) magnetospheric gap and survival of protoplanets.
Results of both 2D and 3D simulations are discussed.Comment: 12 pages, 10 figures, Star-Disk Interaction in Young Stars,
Proceedings of the International Astronomical Union, IAU Symposium, Volume
243. See animations at http://astro.cornell.edu/~romanova/projects.htm and at
http://astro.cornell.edu/us-rus
A 10-micron Search for Inner-Truncated Disks Among Pre-Main-Sequence Stars With Photometric Rotation Periods
We use mid-IR (primarily 10 m) photometry as a diagnostic for the
presence of disks with inner cavities among 32 pre-main sequence stars in Orion
and Taurus-Auriga for which rotation periods are known and which do not show
evidence for inner disks at near-IR wavelengths. Disks with inner cavities are
predicted by magnetic disk-locking models that seek to explain the regulation
of angular momentum in T Tauri stars. Only three stars in our sample show
evidence for excess mid-IR emission. While these three stars may possess
truncated disks consistent with magnetic disk-locking models, the remaining 29
stars in our sample do not. Apparently, stars lacking near-IR excesses in
general do not possess truncated disks to which they are magnetically coupled.
We discuss the implications of this result for the hypothesis of
disk-regulated angular momentum. Evidently, young stars can exist as slow
rotators without the aid of present disk-locking, and there exist very young
stars already rotating near breakup velocity whose subsequent angular momentum
evolution will not be regulated by disks. Moreover, we question whether disks,
when present, truncate in the manner required by disk-locking scenarios.
Finally, we discuss the need for rotational evolution models to take full
account of the large dispersion of rotation rates present at 1 Myr, which may
allow the models to explain the rotational evolution of low-mass pre-main
sequence stars in a way that does not depend upon braking by disks.Comment: 20 pages, 4 figure
Substellar multiplicity in the Hyades cluster
We present the first high-angular resolution survey for multiple systems
among very low-mass stars and brown dwarfs in the Hyades open cluster. Using
the Keck\,II adaptive optics system, we observed a complete sample of 16
objects with estimated masses 0.1 Msun. We have identified three
close binaries with projected separation 0.11", or 5 AU. A
number of wide, mostly faint candidate companions are also detected in our
images, most of which are revealed as unrelated background sources based on
astrometric and/or photometric considerations. The derived multiplicity
frequency, 19+13/-6 % over the 2-350 AU range, and the rarity of systems wider
than 10 AU are both consistent with observations of field very low-mass
objects. In the limited 3-50 AU separation range, the companion frequency is
essentially constant from brown dwarfs to solar-type stars in the Hyades
cluster, which is also in line with our current knowledge for field stars.
Combining the binaries discovered in this surveys with those already known in
the Pleiades cluster reveals that very low-mass binaries in open clusters, as
well as in star-forming regions, are skewed toward lower mass ratios () than are their field counterparts, a result that
cannot be accounted for by selection effects. Although the possibility of
severe systematic errors in model-based mass estimates for very low-mass stars
cannot be completely excluded, it is unlikely to explain this difference. We
speculate that this trend indicates that surveys among very low-mass field
stars may have missed a substantial population of intermediate mass ratio
systems, implying that these systems are more common and more diverse than
previously thought.Comment: Accepted for publication in Astronomy & Astrophysics; 11 pages, 6
figure
Dynamical Masses of Young Stars in Multiple Systems
We present recent measurements of the orbital motion in the young binaries DF
Tau and ZZ Tau, and the hierarchical triple Elias 12, that were obtained with
the Fine Guidance Sensors on the HST and at the Keck Observatory using adaptive
optics. Combining these observations with previous measurements from the
literature, we compute preliminary orbital parameters for DF Tau and ZZ Tau. We
find that the orbital elements cannot yet be determined precisely because the
orbital coverage spans only about 90 degr in position angle. Nonetheless, the
range of possible values for the period and semi-major axis already defines a
useful estimate for the total mass in DF Tau and ZZ Tau, with values of
0.90{+0.85}{-0.35} M_sun and 0.81{+0.44}{-0.25} M_sun, respectively, at a
fiducial distance of 140 pc.Comment: 26 pages, 9 figures, accepted for publication in A
Rotation in the Orion Nebula Cluster
Eighteen fields in the Orion Nebula Cluster (ONC) have been monitored for one
or more observing seasons from 1990-99 with a 0.6-m telescope at Wesleyan
University. Photometric data were obtained in Cousins I on 25-40 nights per
season. Results from the first 3 years of monitoring were analyzed by Choi &
Herbst (1996; CH). Here we provide an update based on 6 more years of
observation and the extensive optical and IR study of the ONC by Hillenbrand
(1997) and Hillenbrand et al. (1998). Rotation periods are now available for
134 ONC members. Of these, 67 were detected at multiple epochs with identical
periods by us and 15 more were confirmed by Stassun et al. (1999) in their
study of Ori OBIc/d. The bimodal period distribution for the ONC is confirmed,
but we also find a clear dependence of rotation period on mass. This can be
understood as an effect of deuterium burning, which temporarily slows the
contraction and thus spin-up of stars with M <0.25 solar masses and ages of ~1
My. Stars with M <0.25 solar masses have not had time to bridge the gap in the
period distribution at ~4 days. Excess H-K and I-K emission, as well as CaII
infrared triplet equivalent widths (Hillenbrand et al. 1998), show weak but
significant correlations with rotation period among stars with M >0.25 solar
masses. Our results provide new observational support for the importance of
disks in the early rotational evolution of low mass stars. [abridged]Comment: 18 pages of text, 17 figures, and 4 tables; accepted for publication
in The Astronomical Journa
Angular momentum evolution of young low-mass stars and brown dwarfs: observations and theory
This chapter aims at providing the most complete review of both the emerging
concepts and the latest observational results regarding the angular momentum
evolution of young low-mass stars and brown dwarfs. In the time since
Protostars & Planets V, there have been major developments in the availability
of rotation period measurements at multiple ages and in different star-forming
environments that are essential for testing theory. In parallel, substantial
theoretical developments have been carried out in the last few years, including
the physics of the star-disk interaction, numerical simulations of stellar
winds, and the investigation of angular momentum transport processes in stellar
interiors. This chapter reviews both the recent observational and theoretical
advances that prompted the development of renewed angular momentum evolution
models for cool stars and brown dwarfs. While the main observational trends of
the rotational history of low mass objects seem to be accounted for by these
new models, a number of critical open issues remain that are outlined in this
review.Comment: 22 pages, 8 figures, accepted for publication in Protostars & Planets
VI, 2014, University of Arizona Press, eds. H. Beuther, R. Klessen, K.
Dullemond, Th. Hennin
The close T Tauri binary system V4046 Sgr: Rotationally modulated X-ray emission from accretion shocks
We report initial results from a quasi-simultaneous X-ray/optical observing
campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri
star (CTTS) binary in which both components are actively accreting. V4046 Sgr
is a strong X-ray source, with the X-rays mainly arising from high-density (n_e
~ 10^(11-12) cm^(-3)) plasma at temperatures of 3-4 MK. Our multiwavelength
campaign aims to simultaneously constrain the properties of this X-ray emitting
plasma, the large scale magnetic field, and the accretion geometry. In this
paper, we present key results obtained via time-resolved X-ray grating spectra,
gathered in a 360 ks XMM-Newton observation that covered 2.2 system rotations.
We find that the emission lines produced by this high-density plasma display
periodic flux variations with a measured period, 1.22+/-0.01 d, that is
precisely half that of the binary star system (2.42 d). The observed rotational
modulation can be explained assuming that the high-density plasma occupies
small portions of the stellar surfaces, corotating with the stars, and that the
high-density plasma is not azimuthally symmetrically distributed with respect
to the rotational axis of each star. These results strongly support models in
which high-density, X-ray-emitting CTTS plasma is material heated in accretion
shocks, located at the base of accretion flows tied to the system by magnetic
field lines.Comment: paper accepted by Ap
Multiple protostellar systems. II. A high resolution near-infrared imaging survey in nearby star-forming regions
(abridged) Our project endeavors to obtain a robust view of multiplicity
among embedded Class I and Flat Spectrum protostars in a wide array of nearby
molecular clouds to disentangle ``universal'' from cloud-dependent processes.
We have used near-infrared adaptive optics observations at the VLT through the
H, Ks and L' filters to search for tight companions to 45 Class I and Flat
Spectrum protostars located in 4 different molecular clouds (Taurus-Auriga,
Ophiuchus, Serpens and L1641 in Orion). We complemented these observations with
published high-resolution surveys of 13 additional objects in Taurus and
Ophiuchus. We found multiplicity rates of 32+/-6% and 47+/-8% over the 45-1400
AU and 14-1400 AU separation ranges, respectively. These rates are in excellent
agreement with those previously found among T Tauri stars in Taurus and
Ophiuchus, and represent an excess of a factor ~1.7 over the multiplicity rate
of solar-type field stars. We found no non-hierarchical triple systems, nor any
quadruple or higher-order systems. No significant cloud-to-cloud difference has
been found, except for the fact that all companions to low-mass Orion
protostars are found within 100 AU of their primaries whereas companions found
in other clouds span the whole range probed here. Based on this survey, we
conclude that core fragmentation always yields a high initial multiplicity
rate, even in giant molecular clouds such as the Orion cloud or in clustered
stellar populations as in Serpens, in contrast with predictions of numerical
simulations. The lower multiplicity rate observed in clustered Class II and
Class III populations can be accounted for by a universal set of properties for
young systems and subsequent ejections through close encounters with unrelated
cluster members.Comment: 15 pages, 6 figures, accepted for publication in Astronomy &
Astrophysic
- …