18,274 research outputs found

    On the determination of the earthquake slip distribution via linear programming techniques

    Get PDF
    The description that one can have of the seismic source is the mani- festation of an imagined model, obviously outlined from Physic Theories and supported by mathematical methods. In that context, the modelling of earthquake rupture consists in finding values of the parameters of the selected physics-mathematical model, through which it becomes possible to reproduce numerically the records of earthquake effects on the Earths surface. We present and test a Linear Programming (LP) inversion in dual form, for reconstructing the kinematics of the rupture of large earthquakes through space-time seismic slip distribution on finite faults planes

    Extended Seismic Source Characterisation using Linear Programming Inversion in a Dual Formulation

    Get PDF
    A linear programming (LP) inversion method in a dual formulation was applied to reconstruct the kinematics of finite seismic ruptures. In a general setting, this approach can yield results from several data sets: strong ground motion, teleseismic waveforms or/and geodesic data (static deformation). The dual formulation involves the transformation of a normal solution space into an equivalent but reduced space: the dual space. The practical result of this transformation is a simpler inversion problem that is therefore faster to resolve, more stable and more robust. The developed algorithm includes a forward problem that calculates Green’s functions using a finite differences method with a 3D structure model. To evaluate the performance of this algorithm, we applied it to the reconstitution of a realistic slip distribution model from a data set synthesised using this model, i.e., the solution of the forward problem. Several other standard inversion approaches were applied to the same synthetic data for comparison

    On the Resolution of Singularities of Multiple Mellin-Barnes Integrals

    Full text link
    One of the two existing strategies of resolving singularities of multifold Mellin-Barnes integrals in the dimensional regularization parameter, or a parameter of the analytic regularization, is formulated in a modified form. The corresponding algorithm is implemented as a Mathematica code MBresolve.mComment: LaTeX, 10 page

    Asymptotic Bound-state Model for Feshbach Resonances

    Get PDF
    We present an Asymptotic Bound-state Model which can be used to accurately describe all Feshbach resonance positions and widths in a two-body system. With this model we determine the coupled bound states of a particular two-body system. The model is based on analytic properties of the two-body Hamiltonian, and on asymptotic properties of uncoupled bound states in the interaction potentials. In its most simple version, the only necessary parameters are the least bound state energies and actual potentials are not used. The complexity of the model can be stepwise increased by introducing threshold effects, multiple vibrational levels and additional potential parameters. The model is extensively tested on the 6Li-40K system and additional calculations on the 40K-87Rb system are presented.Comment: 13 pages, 8 figure

    On the Finite Temperature Formalism in Integrable Quantum Field Theories

    Get PDF
    Two different theoretical formulations of the finite temperature effects have been recently proposed for integrable field theories. In order to decide which of them is the correct one, we perform for a particular model an explicit check of their predictions for the one-point function of the trace of the stress-energy tensor, a quantity which can be independently determined by the Thermodynamical Bethe Ansatz.Comment: 12 pages, corrected some typos and an equatio

    Ways of improvement of technological equipment performance

    Get PDF
    Increasing of production performance of production systems and equipment in the meat-processing industry is integrally linked to maintenance activities. The article analyzes the influence of technological effectiveness, level of hygiene, reliability and simplicity of equipment design on the main parameters of meat products quality. Here it is shown that the strategy of Total Productive Maintenance (TRM) and Lean production is important tool for assessment of parameter of the Overall Equipment Effectiveness (OEE), which is used to assess the main types of losses that reduce the equipment productivity. The link of influence between the structural and mechanical properties of food masses, the moisture content of the initial food raw material, the temperature and viscosity, the processing pressure, and the density for the optimal operating terms of the equipment are analyzed in this research. With the help of OEE concept, the time losses related to the features of the equipment functioning are determined. The types of losses are classified as follows: downtime and readjustment (availability or readiness for operation) of equipment, short-term shutdown of equipment and a decrease in processing speed (productivity or performance rate of the equipment), product rejects and product losses (quality losses) during startup of equipment. While analyzing of the operation of vacuum filler for sausages production, the values of parameters of equipment availability, it productivity and product quality are calculated. The availability index is 0.79, the productivity index is 0.76, and the product quality index is 0.95. Taking into account the obtained data on equipment availability, productivity and product quality, it is determined that the overall equipment effectiveness (OEE) accounts for 57%. The application of this method for studying the overall equipment effectiveness operation can be applied to any technological equipment used in the meat-processing industry and allows eliminating many problems that arise during the operation of technological equipment, improving its technical and economic parameters, and developing a system of measures for improvement of its maintenance and repair

    Predicting scattering properties of ultracold atoms: adiabatic accumulated phase method and mass scaling

    Get PDF
    Ultracold atoms are increasingly used for high precision experiments that can be utilized to extract accurate scattering properties. This calls for a stronger need to improve on the accuracy of interatomic potentials, and in particular the usually rather inaccurate inner-range potentials. A boundary condition for this inner range can be conveniently given via the accumulated phase method. However, in this approach one should satisfy two conditions, which are in principle conflicting, and the validity of these approximations comes under stress when higher precision is required. We show that a better compromise between the two is possible by allowing for an adiabatic change of the hyperfine mixing of singlet and triplet states for interatomic distances smaller than the separation radius. A mass scaling approach to relate accumulated phase parameters in a combined analysis of isotopically related atom pairs is described in detail and its accuracy is estimated, taking into account both Born-Oppenheimer and WKB breakdown. We demonstrate how numbers of singlet and triplet bound states follow from the mass scaling.Comment: 14 pages, 9 figure

    Sympathetic cooling route to Bose-Einstein condensate and Fermi-liquid mixtures

    Get PDF
    We discuss a sympathetic cooling strategy that can successfully mitigate fermion-hole heating in a dilute atomic Fermi-Bose mixture and access the temperature regime in which the fermions behave as a Fermi liquid. We introduce an energy-based formalism to describe the temperature dynamics with which we study a specific and promising mixture composed of 6Li and 87Rb. Analyzing the harmonically trapped mixture, we find that the favourable features of this mixture are further enhanced by using different trapping frequencies for the two species.Comment: 4 pages, 2 figure

    Proton transport and torque generation in rotary biomotors

    Full text link
    We analyze the dynamics of rotary biomotors within a simple nano-electromechanical model, consisting of a stator part and a ring-shaped rotor having twelve proton-binding sites. This model is closely related to the membrane-embedded F0_0 motor of adenosine triphosphate (ATP) synthase, which converts the energy of the transmembrane electrochemical gradient of protons into mechanical motion of the rotor. It is shown that the Coulomb coupling between the negative charge of the empty rotor site and the positive stator charge, located near the periplasmic proton-conducting channel (proton source), plays a dominant role in the torque-generating process. When approaching the source outlet, the rotor site has a proton energy level higher than the energy level of the site, located near the cytoplasmic channel (proton drain). In the first stage of this torque-generating process, the energy of the electrochemical potential is converted into potential energy of the proton-binding sites on the rotor. Afterwards, the tangential component of the Coulomb force produces a mechanical torque. We demonstrate that, at low temperatures, the loaded motor works in the shuttling regime where the energy of the electrochemical potential is consumed without producing any unidirectional rotation. The motor switches to the torque-generating regime at high temperatures, when the Brownian ratchet mechanism turns on. In the presence of a significant external torque, created by ATP hydrolysis, the system operates as a proton pump, which translocates protons against the transmembrane potential gradient. Here we focus on the F0_0 motor, even though our analysis is applicable to the bacterial flagellar motor.Comment: 24 pages, 5 figure
    corecore