10,189 research outputs found

    Tilted excitation implies odd periodic resonances

    Get PDF
    This work was supported by the Brazilian agencies FAPESP and CNPq. MSB also acknowledges the Engineering and Physical Sciences Research Council grant Ref. EP/I032606/1. GID thanks Felipe A. C. Pereira for fruitful discussions.Peer reviewedPostprin

    Corporate Hierarchies and the Size of Nations: Theory and Evidence

    Get PDF
    Corporate organization varies within a country and across countries with country size. The paper starts by establishing some facts about corporate organization based on unique data of 660 Austrian and German corporations. The larger country (Germany) has larger firms with flatter more decentral corporate hierarchies compared to the smaller country (Austria). Firms in the larger country change their organization less fast than firms in the smaller country. Over time firms have been introducing less hierarchical organizations by delegating power to lower levels of the corporation. We develop a theory which explains these facts and which links these features to the trade environment that countries and firms face. We introduce firms with internal hierarchies in a Krugman (1980) model of trade. We show that international trade and the toughness of competition in international markets induce a power struggle in firms which eventually leads to decentralized corporate hierarchies. We offer econometric evidence which is consistent with the models predictions

    Reciprocal Relations Between Kinetic Curves

    Full text link
    We study coupled irreversible processes. For linear or linearized kinetics with microreversibility, xĖ™=Kx\dot{x}=Kx, the kinetic operator KK is symmetric in the entropic inner product. This form of Onsager's reciprocal relations implies that the shift in time, expā”(Kt)\exp (Kt), is also a symmetric operator. This generates the reciprocity relations between the kinetic curves. For example, for the Master equation, if we start the process from the iith pure state and measure the probability pj(t)p_j(t) of the jjth state (jā‰ ij\neq i), and, similarly, measure pi(t)p_i(t) for the process, which starts at the jjth pure state, then the ratio of these two probabilities pj(t)/pi(t)p_j(t)/p_i(t) is constant in time and coincides with the ratio of the equilibrium probabilities. We study similar and more general reciprocal relations between the kinetic curves. The experimental evidence provided as an example is from the reversible water gas shift reaction over iron oxide catalyst. The experimental data are obtained using Temporal Analysis of Products (TAP) pulse-response studies. These offer excellent confirmation within the experimental error.Comment: 6 pages, 1 figure, the final versio

    Ultrasound-induced acoustophoretic motion of microparticles in three dimensions

    Get PDF
    We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh streaming in shallow, infinite, parallel-plate channels, our theory does include the effect of the microchannel side walls. The resulting predictions agree well with numerics and experimental measurements of the acoustophoretic motion of polystyrene spheres with nominal diameters of 0.537 um and 5.33 um. The 3D particle motion was recorded using astigmatism particle tracking velocimetry under controlled thermal and acoustic conditions in a long, straight, rectangular microchannel actuated in one of its transverse standing ultrasound-wave resonance modes with one or two half-wavelengths. The acoustic energy density is calibrated in situ based on measurements of the radiation dominated motion of large 5-um-diam particles, allowing for quantitative comparison between theoretical predictions and measurements of the streaming induced motion of small 0.5-um-diam particles.Comment: 13 pages, 8 figures, Revtex 4.

    Control of Recoil Losses in Nanomechanical SiN Membrane Resonators

    Get PDF
    In the context of a recoil damping analysis, we have designed and produced a membrane resonator equipped with a specific on-chip structure working as a "loss shield" for a circular membrane. In this device the vibrations of the membrane, with a quality factor of 10710^7, reach the limit set by the intrinsic dissipation in silicon nitride, for all the modes and regardless of the modal shape, also at low frequency. Guided by our theoretical model of the loss shield, we describe the design rationale of the device, which can be used as effective replacement of commercial membrane resonators in advanced optomechanical setups, also at cryogenic temperatures

    Calibrated quantum thermometry in cavity optomechanics

    Full text link
    Cavity optomechanics has achieved the major breakthrough of the preparation and observation of macroscopic mechanical oscillators in peculiarly quantum states. The development of reliable indicators of the oscillator properties in these conditions is important also for applications to quantum technologies. We compare two procedures to infer the oscillator occupation number, minimizing the necessity of system calibrations. The former starts from homodyne spectra, the latter is based on the measurement of the motional sidebands asymmetry in heterodyne spectra. Moreover, we describe and discuss a method to control the cavity detuning, that is a crucial parameter for the accuracy of the latter, intrinsically superior procedure

    Internal Anisotropy of Collision Cascades

    Full text link
    We investigate the internal anisotropy of collision cascades arising from the branching structure. We show that the global fractal dimension cannot give an adequate description of the geometrical structure of cascades because it is insensitive to the internal anisotropy. In order to give a more elaborate description we introduce an angular correlation function, which takes into account the direction of the local growth of the branches of the cascades. It is demonstrated that the angular correlation function gives a quantitative description of the directionality and the interrelation of branches. The power law decay of the angular correlation is evidenced and characterized by an exponent and an angular correlation length different from the radius of gyration. It is demonstrated that the overlapping of subcascades has a strong effect on the angular correlation.Comment: RevteX, 8 pages, 6 .eps figures include
    • ā€¦
    corecore