629 research outputs found

    Crossover between different regimes of inhomogeneous superconductivity in planar superconductor-ferromagnet hybrids

    Full text link
    We studied experimentally the effect of a stripe-like domain structure in a ferromagnetic BaFe_{12}O_{19} substrate on the magnetoresistance of a superconducting Pb microbridge. The system was designed in such a way that the bridge is oriented perpendicular to the domain walls. It is demonstrated that depending on the ratio between the amplitude of the nonuniform magnetic field B_0, induced by the ferromagnet, and the upper critical field H_{c2} of the superconducting material, the regions of the reverse-domain superconductivity in the H-T plane can be isolated or can overlap (H is the external magnetic field, T is temperature). The latter case corresponds to the condition B_0/H_{c2}<1 and results in the formation of superconductivity above the magnetic domains of both polarities. We discovered the regime of edge-assisted reverse-domain superconductivity, corresponding to localized superconductivity near the edges of the bridge above the compensated magnetic domains. Direct verification of the formation of inhomogeneous superconducting states and external-field-controlled switching between normal state and inhomogeneous superconductivity were obtained by low-temperature scanning laser microscopy.Comment: 11 pages, 12 figure

    Canalization of the evolutionary trajectory of the human influenza virus

    Get PDF
    Since its emergence in 1968, influenza A (H3N2) has evolved extensively in genotype and antigenic phenotype. Antigenic evolution occurs in the context of a two-dimensional 'antigenic map', while genetic evolution shows a characteristic ladder-like genealogical tree. Here, we use a large-scale individual-based model to show that evolution in a Euclidean antigenic space provides a remarkable correspondence between model behavior and the epidemiological, antigenic, genealogical and geographic patterns observed in influenza virus. We find that evolution away from existing human immunity results in rapid population turnover in the influenza virus and that this population turnover occurs primarily along a single antigenic axis. Thus, selective dynamics induce a canalized evolutionary trajectory, in which the evolutionary fate of the influenza population is surprisingly repeatable and hence, in theory, predictable.Comment: 29 pages, 5 figures, 10 supporting figure

    Interaction of hot spots and THz waves in Bi_2Sr_2CaCu_2O_8 intrinsic Josephson junction stacks of various geometry

    Full text link
    At high enough input power in stacks of Bi_2Sr_2CaCu_2O8 intrinsic Josephson junctions a hot spot (a region heated to above the superconducting transition temperature) coexists with regions still in the superconducting state. In the ``cold'' regions cavity resonances can occur, synchronizing the ac Josephson currents and giving rise to strong coherent THz emission. We investigate the interplay of hot spots and standing electromagnetic waves by low temperature scanning laser microscopy and THz emission measurements, using stacks of various geometries. For a rectangular and a arrow-shaped structure we show that the standing wave can be turned on and off in various regions of the stack structure, depending on the hot spot position. We also report on standing wave and hot spot formation in a disk shaped mesa structure

    Hot-spot formation in stacks of intrinsic Josephson junctions in Bi2Sr2CaCu2O8

    Full text link
    We have studied experimentally and numerically temperature profiles and the formation of hot spots in intrinsic Josephson junction stacks in Bi2Sr2CaCu2O8 (BSCCO). The superconducting stacks are biased in a state where all junctions are resistive. The formation of hot spots in this system is shown to arise mainly from the strongly negative temperature coefficient of the c-axis resistivity of BSCCO at low temperatures. This leads to situations where the maximum temperature in the hot spot can be below or above the superconducting transition temperature Tc. The numerical simulations are in good agreement with the experimental observations

    Magnetization reversal of an individual exchange biased permalloy nanotube

    Get PDF
    We investigate the magnetization reversal mechanism in an individual permalloy (Py) nanotube (NT) using a hybrid magnetometer consisting of a nanometer-scale SQUID (nanoSQUID) and a cantilever torque sensor. The Py NT is affixed to the tip of a Si cantilever and positioned in order to optimally couple its stray flux into a Nb nanoSQUID. We are thus able to measure both the NT's volume magnetization by dynamic cantilever magnetometry and its stray flux using the nanoSQUID. We observe a training effect and temperature dependence in the magnetic hysteresis, suggesting an exchange bias. We find a low blocking temperature TB=18±2T_B = 18 \pm 2 K, indicating the presence of a thin antiferromagnetic native oxide, as confirmed by X-ray absorption spectroscopy on similar samples. Furthermore, we measure changes in the shape of the magnetic hysteresis as a function of temperature and increased training. These observations show that the presence of a thin exchange-coupled native oxide modifies the magnetization reversal process at low temperatures. Complementary information obtained via cantilever and nanoSQUID magnetometry allows us to conclude that, in the absence of exchange coupling, this reversal process is nucleated at the NT's ends and propagates along its length as predicted by theory.Comment: 8 pages, 4 figure

    MHC immunoevasins: protecting the pathogen reservoir in infection

    Get PDF
    Alteration of antigen recognition by T cells as result of insufficient major histocompatibility complex (MHC)-dependent antigen-presenting function has been observed in many cases of infections, particularly in in vitro systems. To hide themselves from an efficient immune response, pathogens may act on MHC-related functions at three levels: (i) by limiting the number of potential antigens that can be presented to naive T cells; (ii) by synthesizing proteins which directly affect MHC cell-surface expression; and (iii) by altering the normal intracellular pathway of peptide loading on MHC. Here, we review examples of pathogens' action on each single step of MHC function and we suggest that the result of these often synergistic actions is both a limitation of the priming of naive T cells and, more importantly, a protection of the pathogen's reservoir from the attack of primed T cells. The above mechanisms may also generate a skewing effect on immune effector mechanisms, which helps preserving the reservoir of infection from sterilization by the immune system

    Microwave Current Imaging in Passive HTS Components by Low-Temperature Laser Scanning Microscopy (LTLSM)

    Full text link
    We have used the LTLSM technique for a spatially resolved investigation of the microwave transport properties, nonlinearities and material inhomogeneities in an operating coplanar waveguide YBa_2Cu_3O_{7-\delta} (YBCO) microwave resonator on an LaAlO_3 (LAO) substrate. The influence of twin-domain blocks, in-plane rotated grains, and micro-cracks in the YBCO film on the nonuniform rf current distribution were measured with a micrometer-scale spatial resolution. The impact of the peaked edge currents and rf field penetration into weak links on the linear device performance were studied as well. The LTLSM capabilities and its future potential for non-destructive characterization of the microwave properties of superconducting circuits are discussed.Comment: 8 pages, 9 figures, 2-column format, presented at High Temperature Superconductors in High Frequency Fields 2004, Journal of Superconductivity (in press
    corecore