research

Interaction of hot spots and THz waves in Bi_2Sr_2CaCu_2O_8 intrinsic Josephson junction stacks of various geometry

Abstract

At high enough input power in stacks of Bi_2Sr_2CaCu_2O8 intrinsic Josephson junctions a hot spot (a region heated to above the superconducting transition temperature) coexists with regions still in the superconducting state. In the ``cold'' regions cavity resonances can occur, synchronizing the ac Josephson currents and giving rise to strong coherent THz emission. We investigate the interplay of hot spots and standing electromagnetic waves by low temperature scanning laser microscopy and THz emission measurements, using stacks of various geometries. For a rectangular and a arrow-shaped structure we show that the standing wave can be turned on and off in various regions of the stack structure, depending on the hot spot position. We also report on standing wave and hot spot formation in a disk shaped mesa structure

    Similar works

    Full text

    thumbnail-image

    Available Versions