615 research outputs found

    Relativistic Doppler-boosted emission in gamma-ray binaries

    Full text link
    Gamma-ray binaries could be compact pulsar wind nebulae formed when a young pulsar orbits a massive star. The pulsar wind is contained by the stellar wind of the O or Be companion, creating a relativistic comet-like structure accompanying the pulsar along its orbit. The X-ray and the very high energy (>100 GeV, VHE) gamma-ray emissions from the binary LS 5039 are modulated on the orbital period of the system. Maximum and minimum flux occur at the conjunctions of the orbit, suggesting that the explanation is linked to the orbital geometry. The VHE modulation has been proposed to be due to the combined effect of Compton scattering and pair production on stellar photons, both of which depend on orbital phase. The X-ray modulation could be due to relativistic Doppler boosting in the comet tail where both the X-ray and VHE photons would be emitted. Relativistic aberrations change the seed stellar photon flux in the comoving frame so Doppler boosting affects synchrotron and inverse Compton emission differently. The dependence with orbital phase of relativistic Doppler-boosted (isotropic) synchrotron and (anisotropic) inverse Compton emission is calculated, assuming that the flow is oriented radially away from the star (LS 5039) or tangentially to the orbit (LS I +61 303, PSR B1259-63). Doppler boosting of the synchrotron emission in LS 5039 produces a lightcurve whose shape corresponds to the X-ray modulation. The observations imply an outflow velocity of 0.15-0.33c consistent with the expected flow speed at the pulsar wind termination shock. In LS I +61 303, the calculated Doppler boosted emission peaks in phase with the observed VHE and X-ray maximum. Doppler boosting might provide an explanation for the puzzling phasing of the VHE peak in this system.Comment: 8 pages, 7 figures, accepted for publication in A&

    Diffractive Interaction and Scaling Violation in pp->pi^0 Interaction and GeV Excess in Galactic Diffuse Gamma-Ray Spectrum of EGRET

    Full text link
    We present here a new calculation of the gamma-ray spectrum from pp->pi^0 in the Galactic ridge environment. The calculation includes the diffractive pp interaction and incorporates the Feynman scaling violation for the first time. Galactic diffuse gamma-rays come, predominantly, from pi^0->gamma gamma in the sub-GeV to multi-GeV range. Hunter et al. found, however, an excess in the GeV range ("GeV Excess") in the EGRET Galactic diffuse spectrum above the prediction based on experimental pp->pi^0 cross-sections and the Feynman scaling hypothesis. We show, in this work, that the diffractive process makes the gamma-ray spectrum harder than the incident proton spectrum by ~0.05 in power-law index, and, that the scaling violation produces 30-80% more pi^0 than the scaling model for incident proton energies above 100GeV. Combination of the two can explain about a half of the "GeV Excess" with the local cosmic proton (power-law index ~2.7). The excess can be fully explained if the proton spectral index in the Galactic ridge is a little harder (~0.2 in power-law index) than the local spectrum. Given also in the paper is that the diffractive process enhances e^+ over e^- and the scaling violation gives 50-100% higher p-bar yield than without the violation, both in the multi-GeV range.Comment: 35 pages, 11 figures, to appear in Astrophysical Journa

    The modulation of the gamma-ray emission from the binary LS 5039

    Full text link
    Gamma-ray binaries, composed of a massive star and compact object, have been established as a new class of sources of very high energy (VHE) photons. The gamma-rays are produced by inverse Compton scattering of the stellar light by VHE electrons accelerated in the vicinity of the compact object. The VHE emission from LS 5039 displays an orbital modulation. The inverse Compton spectrum depends on the angle between the incoming and outgoing photon in the electron rest frame. Since the angle at which an observer sees the star and electrons changes with the orbit, a phase dependence of the spectrum is expected. The phase-dependent spectrum of LS 5039 is calculated, assuming a continuous injection of electrons. The shape of the electron distribution depends on the injected power-law and on the magnetic field intensity. Anisotropic scattering produces hard emission at inferior conjunction, when attenuation due to pair production of the VHE gamma-rays on star light is minimum. The computed lightcurve and spectra provide good fits to the HESS and EGRET observations, except at phases of maximum attenuation where pair cascade emission may be significant for HESS. Detailed predictions are made for a modulation in the GLAST energy range. The magnetic field intensity at periastron is 0.8+-0.2 G. Anisotropic inverse Compton scattering plays a major role in LS 5039. The derived magnetic field intensity, injection energy and slope suggest a rotation-powered pulsar wind nebula. Gamma-ray binaries are promising sources to study the environment of pulsars on small scales.Comment: 12 pages, 8 figures, accepted for publication in A&

    Neutrino, Neutron, and Cosmic Ray Production in the External Shock Model of Gamma Ray Bursts

    Full text link
    The hypothesis that ultra-high energy (>~ 10^19 eV) cosmic rays (UHECRs) are accelerated by gamma-ray burst (GRB) blast waves is assumed to be correct. Implications of this assumption are then derived for the external shock model of gamma-ray bursts. The evolving synchrotron radiation spectrum in GRB blast waves provides target photons for the photomeson production of neutrinos and neutrons. Decay characteristics and radiative efficiencies of the neutral particles that escape from the blast wave are calculated. The diffuse high-energy GRB neutrino background and the distribution of high-energy GRB neutrino events are calculated for specific parameter sets, and a scaling relation for the photomeson production efficiency in surroundings with different densities is derived. GRBs provide an intense flux of high-energy neutrons, with neutron-production efficiencies exceeding ~ 1% of the total energy release. The radiative characteristics of the neutron beta-decay electrons from the GRB "neutron bomb" are solved in a special case. Galaxies with GRB activity should be surrounded by radiation halos of ~ 100 kpc extent from the outflowing neutrons, consisting of a nonthermal optical/X-ray synchrotron component and a high-energy gamma-ray component from Compton-scattered microwave background radiation. The luminosity of sources of GRBs and relativistic outflows in L* galaxies such as the Milky Way is at the level of ~10^40+-1 ergs/s. This is sufficient to account for UHECR generation by GRBs. We briefly speculate on the possibility that hadronic cosmic rays originate from the subset of supernovae that collapse to form relativistic outflows and GRBs. (abridged)Comment: 53 pages, 8 figures, ApJ, in press, 574, July 20, 2002. Substantial revision, previous Appendix expanded to ApJ, 556, 479; cosmic ray origin speculations to Heidelberg (astro-ph/001054) and Hamburg ICRC (astro-ph/0202254) proceeding

    On leptonic models for blazars in the Fermi era

    Full text link
    Some questions raised by Fermi-LAT data about blazars are summarized, along with attempts at solutions within the context of leptonic models. These include both spectral and statistical questions, including the origin of the GeV breaks in low-synchrotron peaked blazars, the location of the gamma-ray emission sites, the correlations in the spectral energy distributions with luminosity, and the difficulty of synchrotron/SSC models to fit the spectra of some TeV blazars.Comment: 9 pages, 1 figure, in "Beamed and Unbeamed Gamma Rays from Galaxies," Muonio, Finland, 11-15 April, 2011, ed. R. Wagner, L. Maraschi, A. Sillanpaa, to appear in Journal of Physics: Conference Serie

    Characteristics of EGRET Blazars in the VLBA Imaging and Polarimetry Survey (VIPS)

    Get PDF
    We examine the radio properties of EGRET-detected blazars observed as part of the VLBA Imaging and Polarimetry Survey (VIPS). VIPS has a flux limit roughly an order of magnitude below the MOJAVE survey and most other samples that have been used to study the properties of EGRET blazars. At lower flux levels, radio flux density does not directly correlate with gamma-ray flux density. We do find that the EGRET-detected blazars tend to have higher brightness temperatures, greater core fractions, and possibly larger than average jet opening angles. A weak correlation is also found with jet length and with polarization. All of the well-established trends can be explained by systematically larger Doppler factors in the gamma-ray loud blazars, consistent with the measurements of higher apparent velocities found in monitoring programs carried out at radio frequencies above 10 GHz.Comment: 20 pages, 7 figures, accepted to Ap

    The new model of fitting the spectral energy distributions of Mkn 421 and Mkn 501

    Full text link
    The spectral energy distribution (SED) of TeV blazars has a double-humped shape that is usually interpreted as Synchrotron Self Compton (SSC) model. The one zone SSC model is used broadly but cannot fit the high energy tail of SED very well. It need bulk Lorentz factor which is conflict with the observation. Furthermore one zone SSC model can not explain the entire spectrum. In the paper, we propose a new model that the high energy emission is produced by the accelerated protons in the blob with a small size and high magnetic field, the low energy radiation comes from the electrons in the expanded blob. Because the high and low energy photons are not produced at the same time, the requirement of large Doppler factor from pair production is relaxed. We present the fitting results of the SEDs for Mkn 501 during April 1997 and Mkn 421 during March 2001 respectively.Comment: 5 pages, 1 figures, 1table. accepted for publication in Sciences in China --

    GRB 070311: a direct link between the prompt emission and the afterglow

    Full text link
    We present prompt gamma-ray, early NIR/optical, late optical and X-ray observations of the peculiar GRB 070311 discovered by INTEGRAL, in order to gain clues on the mechanisms responsible for the prompt gamma-ray pulse as well as for the early and late multi-band afterglow of GRB 070311. We fitted with empirical functions the gamma-ray and optical light curves and scaled the result to the late time X-rays. The H-band light curve taken by REM shows two pulses peaking 80 and 140 s after the peak of the gamma-ray burst and possibly accompanied by a faint gamma-ray tail. Remarkably, the late optical and X-ray afterglow underwent a major rebrightening between 3x10^4 and 2x10^5 s after the burst with an X-ray fluence comparable with that of the prompt emission extrapolated in the same band. Notably, the time profile of the late rebrightening can be described as the combination of a time-rescaled version of the prompt gamma-ray pulse and an underlying power law. This result supports a common origin for both prompt and late X-ray/optical afterglow rebrightening of GRB 070311 within the external shock scenario. The main fireball would be responsible for the prompt emission, while a second shell would produce the rebrightening when impacting the leading blastwave in a refreshed shock (abridged).Comment: 14 pages, 11 figures, 4 tables, accepted to A&

    A Viewing Angle - Kinetic Luminosity Unification Scheme For BL Lacertae Objects

    Get PDF
    We propose a unified classification for BL Lac objects (BLs), focusing on the synchrotron peak frequency of the spectral energy distribution. The unification scheme is based on the angle Theta that describes the orientation of the relativistic jet and on the electron kinetic luminosity Lambda of the jet. We assume that Lambda scales with the size of the jet r in a self-similar fashion (Lambda propto r^2), as supported by observational data. The jets are self-similar in geometry and have the same pressure and median magnetic field at the inlet, independent of size. The self-similarity is broken for the highest energy electrons, which radiate mainly at high frequencies, since for large sources they suffer more severe radiative energy losses over a given fraction of the jet length. We calculate the optically thin synchrotron spectrum using an accelerating inner jet model based on simple relativistic gas dynamics and show that it can fit the observed infrared to X-ray spectrum of PKS 2155--304. We couple the accelerating jet model to the unification scheme and compare the results to complete samples of BLs. The negative apparent evolution of X-ray selected BLs is explained as a result of positive evolution of the jet electron kinetic luminosity Λkin\Lambda_{kin}. We review observational arguments in favor of the existence of scaled-down accretion disks and broad emission-line regions in BLs. The proposed unification scheme can explain the lack of observed broad emission lines in X-ray selected BLs, as well as the existence of those lines preferentially in luminous radio-selected BLs. Finally, we review observational arguments that suggest the extension of this unification scheme to all blazars.Comment: 32 pages, 8 figures, to be published in the ApJ (Oct 20, 1998
    • 

    corecore