48 research outputs found

    Multilayer scaffolds in orthopaedic tissue engineering

    Get PDF
    Abstract Purpose The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Methods Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. Results In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Conclusions Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future

    Characterization of bone repair in rat femur after treatment with calcium phosphate cement and autogenous bone graft

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this study, the biocompatibility, stability and osteotransductivity of a new cement based on alpha-tricalcium phosphate (alpha-TCP) were investigated in a bone repair model using a rat model.</p> <p>Methods</p> <p>The potential of alpha-TCP on bone repair was compared to autogenous bone grafting, and unfilled cavities were used as negative control. Surgical cavities were prepared and designated as test (T), implanted with alpha-TCP blocks; negative control (C - ), unfilled; and positive control (C + ), implanted with autogenous bone graft. Results were analyzed on postoperative days three, seven, 14, 21 and 60.</p> <p>Results</p> <p>The histological analyses showed the following results. Postoperative day three: presence of inflammatory infiltrate, erythrocytes and proliferating fibroblasts in T, C - and C + samples. Day seven: extensive bone neoformation in groups T and C + , and beginning of alpha-TCP resorption by phagocytic cells. Days 14 and 21: osteoblastic activity in the three types of cavities. Day 60: In all samples, neoformed bone similar to surrounding bone. Moderate interruption on the ostectomized cortical bone.</p> <p>Conclusions</p> <p>Bone neoformation is seen seven days after implantation of alpha-TCP and autogenous bone. Comparison of C - with T and C + samples showed that repair is faster in implanted cavities; on day 60, control groups presented almost complete bone repair. Alpha-TCP cement presents biocompatibility and osteotransductivity, besides stability, but 60 days after surgery the cavities were not closed.</p

    The effects of the synovium on chondrocyte growth: An experimental study

    No full text
    Purpose: The objective of this study was to evaluate the effects of synovium on the proliferation of the cartilage tissue and chondrocytes using a rabbit knee model as an in vivo synovial culture medium. Methods: Twelve New Zealand rabbits were used as the animal model in this investigation. Standard size chondral and osteochondral cartilage grafts were taken from, respectively, the left and right knees of all the animals. Two groups of 6 animals were formed: in Group I (synovium group), grafts were placed into the synovial tissue and in group II (patellar tendon group) behind the patellar tendon of the corresponding knees. After 4 months, samples were collected and evaluated macroscopically by measuring their dimensions (vertical = D1, horizontal = D2, and depth = D3) and volumes, and histologically by counting the chondrocyte number using camera lucida method. Results: Macroscopically, the increase in average D1, D2, and D3 measurements and volume in the osteochondral specimens were significantly higher compared to the chondral specimens in both groups (P < 0.05). However, no significant difference was observed between the two groups in terms of macroscopic values. Histologically, the mean chondrocyte counts in osteochondral and chondral specimens for Group I (synovium) were 20.2 and 18.1, and for Group II (patellar tendon) were 18.7 and 15.6, respectively. The mean number of chondrocytes was found to be significantly higher in osteochondral specimens than that of chondral specimens in either group (P < 0.05). Overall average chondrocyte count was significantly higher for Group I compared to Group II (P < 0.05). Conclusion: Transplantation of the cartilage grafts into the synovial tissue in rabbit knees significantly enhanced the chondrocyte production compared with the group where the grafts were transplanted into intra-articular patellar tendon. The results of this study indicate that native synovial tissue may have the potential to be used as an in vivo culture medium for osteochondral tissue growth. © 2011 Springer-Verlag.Acknowledgments This study was supported by funds from the Hacettepe University, the Center of Scientific Researches. We wish to thank Reha ALPAR PhD Prof. and Sevilay KARAHAN PhD for the biostatistical evaluations
    corecore