266 research outputs found

    Interfacial Strength and Physical Properties of Functionalized Graphene - Epoxy Nanocomposites

    Get PDF
    The toughness and coefficient of thermal expansion of a series of functionalized graphene sheet - epoxy nanocomposites are investigated. Functionalized graphene sheets are produced by splitting graphite oxide into single graphene sheets through a rapid thermal expansion process. These graphene sheets contain approx. 10% oxygen due to the presence of hydroxide, epoxide, and carboxyl functional groups which assist in chemical bond formation with the epoxy matrix. Intrinsic surface functionality is used to graft alkyl amine chains on the graphene sheets, and the addition of excess hardener insures covalent bonding between the epoxide matrix and graphene sheets. Considerable improvement in the epoxy dimensional stability is obtained. An increase in nanocomposite toughness is observed in some cases

    Fe-substituted mullite powders for the in situ synthesis of carbon nanotubes by catalytic chemical vapor deposition

    Get PDF
    Powders of iron-substituted mullite were prepared by combustion and further calcination in air at different temperatures. A detailed study involving notably Mo¨ssbauer spectroscopy showed that the Fe3+ ions are distributed between the mullite phase and a corundum phase that progressively dissolves into mullite upon the increase in calcination temperature. Carbon nanotube-Fe-mullite nanocomposites were prepared for the first time by a direct method involving a reduction of these powders in H2-CH4 and without any mechanical mixing step. The carbon nanotubes formed by the catalytic decomposition of CH4 on the smallest metal particles are mostly double-walled and multiwalled, although some carbon nanofibers are also observed

    Personalized copy number and segmental duplication maps using next-generation sequencing

    Get PDF
    Despite their importance in gene innovation and phenotypic variation, duplicated regions have remained largely intractable owing to difficulties in accurately resolving their structure, copy number and sequence content. We present an algorithm (mrFAST) to comprehensively map next-generation sequence reads, which allows for the prediction of absolute copy-number variation of duplicated segments and genes. We examine three human genomes and experimentally validate genome-wide copy number differences. We estimate that, on average, 73-87 genes vary in copy number between any two individuals and find that these genic differences overwhelmingly correspond to segmental duplications (odds ratio = 135; P < 2.2 x 10(-16)). Our method can distinguish between different copies of highly identical genes, providing a more accurate assessment of gene content and insight into functional constraint without the limitations of array-based technology

    Quantum Impurities and the Neutron Resonance Peak in YBa2Cu3O7{\bf YBa_2 Cu_3 O_7}: Ni versus Zn

    Full text link
    The influence of magnetic (S=1) and nonmagnetic (S=0) impurities on the spin dynamics of an optimally doped high temperature superconductor is compared in two samples with almost identical superconducting transition temperatures: YBa2_2(Cu0.97_{0.97}Ni0.03_{0.03})3_3O7_7 (Tc_c=80 K) and YBa2_2(Cu0.99_{0.99}Zn0.01_{0.01})3_3O7_7 (Tc_c=78 K). In the Ni-substituted system, the magnetic resonance peak (which is observed at Er≃_r \simeq40 meV in the pure system) shifts to lower energy with a preserved Er_r/Tc_c ratio while the shift is much smaller upon Zn substitution. By contrast Zn, but not Ni, restores significant spin fluctuations around 40 meV in the normal state. These observations are discussed in the light of models proposed for the magnetic resonance peak.Comment: 3 figures, submitted to PR

    Effect of Nonmagnetic Impurities on the Magnetic Resonance Peak in YBa2Cu3O7

    Full text link
    The magnetic excitation spectrum of a YBa_2 Cu_3 O_7 crystal containing 0.5% of nonmagnetic (Zn) impurities has been determined by inelastic neutron scattering. Whereas in the pure system a sharp resonance peak at E ~ 40 meV is observed exclusively below the superconducting transition temperature T_c, the magnetic response in the Zn-substituted system is broadened significantly and vanishes at a temperature much higher than T_c. The energy-integrated spectral weight observed near q = (pi,pi) increases with Zn substitution, and only about half of the spectral weight is removed at T_c

    Spin Susceptibility in Underdoped YBa2Cu3O6+x\bf YBa_2Cu_3O_{6+x}

    Full text link
    We report a comprehensive polarized and unpolarized neutron scattering study of the evolution of the dynamical spin susceptibility with temperature and doping in three underdoped single crystals of the \YBCO{6+x} high temperature superconductor: \YBCO{6.5} (Tc = 52 K), \YBCO{6.7} (Tc = 67 K), and \YBCO{6.85} (T_c = 87 K). Theoretical implications of these data are discussed, and a critique of recent attempts to relate the spin excitations to the thermodynamics of high temperature superconductors is given.Comment: minor revisions, to appear in PR

    smyRNA: A Novel Ab Initio ncRNA Gene Finder

    Get PDF
    Background: Non-coding RNAs (ncRNAs) have important functional roles in the cell: for example, they regulate gene expression by means of establishing stable joint structures with target mRNAs via complementary sequence motifs. Sequence motifs are also important determinants of the structure of ncRNAs. Although ncRNAs are abundant, discovering novel ncRNAs on genome sequences has proven to be a hard task; in particular past attempts for ab initio ncRNA search mostly failed with the exception of tools that can identify micro RNAs. Methodology/Principal Findings: We present a very general ab initio ncRNA gene finder that exploits differential distributions of sequence motifs between ncRNAs and background genome sequences. Conclusions/Significance: Our method, once trained on a set of ncRNAs from a given species, can be applied to a genome sequences of other organisms to find not only ncRNAs homologous to those in the training set but also others that potentially belong to novel (and perhaps unknown) ncRNA families. Availability

    Membrane Potential-Dependent Modulation of Recurrent Inhibition in Rat Neocortex

    Get PDF
    Dynamic balance of excitation and inhibition is crucial for network stability and cortical processing, but it is unclear how this balance is achieved at different membrane potentials (Vm) of cortical neurons, as found during persistent activity or slow Vm oscillation. Here we report that a Vm-dependent modulation of recurrent inhibition between pyramidal cells (PCs) contributes to the excitation-inhibition balance. Whole-cell recording from paired layer-5 PCs in rat somatosensory cortical slices revealed that both the slow and the fast disynaptic IPSPs, presumably mediated by low-threshold spiking and fast spiking interneurons, respectively, were modulated by changes in presynaptic Vm. Somatic depolarization (>5 mV) of the presynaptic PC substantially increased the amplitude and shortened the onset latency of the slow disynaptic IPSPs in neighboring PCs, leading to a narrowed time window for EPSP integration. A similar increase in the amplitude of the fast disynaptic IPSPs in response to presynaptic depolarization was also observed. Further paired recording from PCs and interneurons revealed that PC depolarization increases EPSP amplitude and thus elevates interneuronal firing and inhibition of neighboring PCs, a reflection of the analog mode of excitatory synaptic transmission between PCs and interneurons. Together, these results revealed an immediate Vm-dependent modulation of cortical inhibition, a key strategy through which the cortex dynamically maintains the balance of excitation and inhibition at different states of cortical activity
    • …
    corecore