134 research outputs found

    Thermal radiation of various gravitational backgrounds

    Get PDF
    We present a simple and general procedure for calculating the thermal radiation coming from any stationary metric. The physical picture is that the radiation arises as the quasi--classical tunneling of particles through a gravitational barrier. We show that our procedure can reproduce the results of Hawking and Unruh radiation. We also show that under certain kinds of coordinate transformations the temperature of the thermal radiation will change in the case of the Schwarzschild black holes. In addition we apply our procedure to a rotating/orbiting system and show that in this case there is no radiation, which has experimental implications for the polarization of particles in circular accelerators.Comment: 6 pages revtex, added references, publication version. To be published IJMP

    Professional competence of graduates as employment guarantee

    Full text link
    In the article the basic problems of employment of graduates and their solutions in the current market conditionsРассмотрены основные проблемы трудоустройства выпускников вузов и пути их решения в современных рыночных условия

    How often does the Unruh-DeWitt detector click? Regularisation by a spatial profile

    Full text link
    We analyse within first-order perturbation theory the instantaneous transition rate of an accelerated Unruh-DeWitt particle detector whose coupling to a massless scalar field on four-dimensional Minkowski space is regularised by a spatial profile. For the Lorentzian profile introduced by Schlicht, the zero size limit is computed explicitly and expressed as a manifestly finite integral formula that no longer involves regulators or limits. The same transition rate is obtained for an arbitrary profile of compact support under a modified definition of spatial smearing. Consequences for the asymptotic behaviour of the transition rate are discussed. A number of stationary and nonstationary trajectories are analysed, recovering in particular the Planckian spectrum for uniform acceleration.Comment: 30 pages, 1 figure. v3: Added references and minor clarification

    Giant Anharmonic Phonon Scattering in PbTe

    Full text link
    Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivity. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA) modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type

    Observer Dependent Horizon Temperatures: a Coordinate-Free Formulation of Hawking Radiation as Tunneling

    Full text link
    We reformulate the Hamilton-Jacobi tunneling method for calculating Hawking radiation in static, spherically-symmetric spacetimes by explicitly incorporating a preferred family of frames. These frames correspond to a family of observers tied to a locally static timelike Killing vector of the spacetime. This formulation separates the role of the coordinates from the choice of vacuum and thus provides a coordinate-independent formulation of the tunneling method. In addition, it clarifies the nature of certain constants and their relation to these preferred observers in the calculation of horizon temperatures. We first use this formalism to obtain the expected temperature for a static observer at finite radius in the Schwarzschild spacetime. We then apply this formalism to the Schwarzschild-de Sitter spacetime, where there is no static observer with 4-velocity equal to the static timelike Killing vector. It is shown that a preferred static observer, one whose trajectory is geodesic, measures the lowest temperature from each horizon. Furthermore, this observer measures horizon temperatures corresponding to the well-known Bousso-Hawking normalization.Comment: 11 pages, 1 2-part figure, references added, appendix added, discussion streamline

    Black Hole Evaporation in a Noncommutative Charged Vaidya Model

    Full text link
    The aim of this paper is to study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstro¨\ddot{o}m-like solution of this model which leads to an exact (tr)(t-r) dependent metric. The behavior of temporal component of this metric and the corresponding Hawking temperature is investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of the charged massive particles through the quantum horizon. It is found that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from maximum value to zero. It is mentioned here that the final stage of black hole evaporation turns out to be a naked singularity.Comment: 25 pages, 36 figures, accepted for publication in J. Exp. Theor. Phy

    COMPARISON OF THE STRUCTURE AND FRACTURES OF HARD ALLOYS

    Full text link
    Проблему импортозамещения твердых сплавов для наплавок рабочих органов сельскохозяйственных машин невозможно решить без создания новых отечественных твердосплавных материалов. Решение такой задачи возможно только при условии достижения необходимой глубины понимания природы прочности, износостойкости и сопротивляемости разрушению существующих твердых сплавов, механизмов разрушения наблюдаемых в них разнородных структур.The problem of import substitution of hard alloys for pad weld work tool of agricultural machinery is impossible to solve without creation new domestic hard-alloy material. The solution of such task is possible only in condition of achievement of necessary depth of understanding of the nature of durability, wear resistance and the resilience to destruction of the existing solid alloys, mechanisms of destruction of the diverse structures observed in them.Работа выполнена в рамках Соглашения № 14.578.21.0129 о предоставлении субсидии для финансового обеспечения (возмещения) затрат, связанных с выполнением ПНИЭР по теме: «Разработка импортозамещающих твердых сплавов с повышенными износными и технологическими характеристиками для упрочнения быстроизнашиваемых деталей сельхозмашин, эксплуатирующихся в абразивной среде». Уникальный идентификатор ПНИЭР RFMEFI57815X0129

    Back reaction, emission spectrum and entropy spectroscopy

    Full text link
    Recently, an interesting work, which reformulates the tunneling framework to directly produce the Hawking emission spectrum and entropy spectroscopy in the tunneling picture, has been received a broad attention. However, during the emission process, most related observations have not incorporated the effects of back reaction on the background spacetime, whose derivations are therefore not the desiring results for the real physical process. With this point as a central motivation, in this paper we suitably adapt the \emph{reformulated} tunneling framework so that it can well accommodate the effects of back reaction to produce the Hawking emission spectrum and entropy spectroscopy. Consequently, we interestingly find that, when back reaction is considered, the Parikh-Wilczek's outstanding observations that, an isolated radiating black hole has an unitary-evolving emission spectrum that is \emph{not} precisely thermal, but is related to the change of the Bekenstein-Hawking entropy, can also be reproduced in the reformulated tunneling framework, meanwhile the entropy spectrum has the same form as that without inclusion of back reaction, which demonstrates the entropy quantum is \emph{independent} of the effects of back reaction. As our final analysis, we concentrate on the issues of the black hole information, but \emph{unfortunately} find that, even including the effects of back reaction and higher-order quantum corrections, such tunneling formalism can still not provide a mechanism for preserving the black hole information.Comment: 16 pages, no figure, use JHEP3.cls. to be published in JHE

    Twenty-year clinical progression of dysferlinopathy in patients from Dagestan

    Get PDF
    © 2017 Umakhanova, Bardakov, Mavlikeev, Chernova, Magomedova, Akhmedova, Yakovlev, Dalgatov, Fedotov, Isaev and Deev.To date, over 30 genes with mutations causing limb-girdle muscle dystrophy have been described. Dysferlinopathies are a form of limb-girdle muscle dystrophy type 2B with an incidence ranging from 1:1,300 to 1:200,000 in different populations. In 1996, Dr. S. N. Illarioshkin described a family from the Botlikhsky district of Dagestan, where limb-girdle muscle dystrophy type 2B and Miyoshi myopathy were diagnosed in 12 members from three generations of a large Avar family. In 2000, a previously undescribed mutation in the DYSF gene (c.TG573/574AT; p. Val67Asp) was detected in the affected members of this family. Twenty years later, in this work, we re-examine five known and seven newly affected family members previously diagnosed with dysferlinopathy. We observed disease progression in family members who were previously diagnosed and noted obvious clinical polymorphism of the disease. A typical clinical case is provided
    corecore