2,095 research outputs found
X-ray tracing using Geant4
We describe an extension to the Geant4 software package that allows it to be
used as a general purpose X-ray tracing package. We demonstrate its use by
building a model of the X-ray optics of the XMM-Newton, calculating its
effective area, and comparing the results with the published calibration
curves.Comment: 9 pages, 5 figures, accepted for publication by NIMA, DOI know
Simulations of Galactic Cosmic Rays Impacts on the Herschel/PACS Photoconductor Arrays with Geant4 Code
We present results of simulations performed with the Geant4 software code of
the effects of Galactic Cosmic Ray impacts on the photoconductor arrays of the
PACS instrument. This instrument is part of the ESA-Herschel payload, which
will be launched in late 2007 and will operate at the Lagrangian L2 point of
the Sun-Earth system. Both the Satellite plus the cryostat (the shield) and the
detector act as source of secondary events, affecting the detector performance.
Secondary event rates originated within the detector and from the shield are of
comparable intensity. The impacts deposit energy on each photoconductor pixel
but do not affect the behaviour of nearby pixels. These latter are hit with a
probability always lower than 7%. The energy deposited produces a spike which
can be hundreds times larger than the noise. We then compare our simulations
with proton irradiation tests carried out for one of the detector modules and
follow the detector behaviour under 'real' conditions.Comment: paper submitted to Experimental Astronomy in March 200
Flux creep in Bi2Sr2CaCu2O8(sub +x) single crystals
The results of a magnetic study on a Bi2Sr2CaCu2O(8+x) single crystal are reported. Low field susceptibility (dc and ac), magnetization cycles and time dependent measurements were performed. With increasing the temperature the irreversible regime of the magnetization cycles is rapidly restricted to low fields, showing that the critical current J(sub c) becomes strongly field dependent well below T(sub c). At 2.4 K the critical current in zero field, determined from the remanent magnetization by using the Bean formula for the critical state, is J(sub c) = 2 10(exp 5) A/sq cm. The temperature dependence of J(sub c) is satisfactorily described by the phenomenological law J(sub c) = J(sub c) (0) (1 - T/T(sub c) (sup n), with n = 8. The time decay of the zero field cooled magnetization and of the remanent magnetization was studied at different temperatures for different magnetic fields. The time decay was found to be logarithmic in both cases, at least at low temperatures. At T = 4.2 K for a field of 10 kOe applied parallel to the c axis, the average pinning energy, determined by using the flux creep model, is U(sub o) = 0.010 eV
The application of Geant4 simulation code for brachytherapy treatment
Brachytherapy is a radiotherapeutic modality that makes use of radionuclides to deliver a high radiation dose to a well-defined volume while sparing surrounding healthy structures. At the National Institute for Cancer Research of Genova a High Dose Rate remote afterloading system provides Ir(192) endocavitary brachytherapy treatments. We studied the possibility to use the Geant4 Monte Carlo simulation toolkit in brachytherapy for calculation of complex physical parameters, not directly available by experiment al measurements, used in treatment planning dose deposition models
Hodgkin lymphoma: A special microenvironment
Classical Hodgkn’s lymphoma (cHL) is one of the most particular lymphomas for the few tumor cells surrounded by an inflammatory microenvironment. Reed-Sternberg (RS) and Hodgkin (H) cells reprogram and evade antitumor mechanisms of the normal cells present in the microenvi-ronment. The cells of microenvironment are essential for growth and survival of the RS/H cells and are recruited through the effect of cytokines/chemokines. We summarize recent advances in gene expression profiling (GEP) analysis applied to study microenvironment component in cHL. We also describe the main therapies that target not only the neoplastic cells but also the cellular components of the background
Improved Fast Neutron Spectroscopy via Detector Segmentation
Organic scintillators are widely used for fast neutron detection and
spectroscopy. Several effects complicate the interpretation of results from
detectors based upon these materials. First, fast neutrons will often leave a
detector before depositing all of their energy within it. Second, fast neutrons
will typically scatter several times within a detector, and there is a
non-proportional relationship between the energy of, and the scintillation
light produced by, each individual scatter; therefore, there is not a
deterministic relationship between the scintillation light observed and the
neutron energy deposited. Here we demonstrate a hardware technique for reducing
both of these effects. Use of a segmented detector allows for the
event-by-event correction of the light yield non-proportionality and for the
preferential selection of events with near-complete energy deposition, since
these will typically have high segment multiplicities.Comment: Accepted for publication in Nuclear Instruments and Methods in
Physics Research Section
Methodology framework for prioritisation of renewable energy sources in port areas
Ports play a crucial role in increasing the decarbonisation of urban environments to mitigate the environmental impacts of maritime transport and promote sustainable intermodal mobility. Various efforts have been made to increase energy self-sufficiency using renewable energy sources (RESs) in different ports worldwide. However, the ports played an essential role in the pollution process of the nearest cities due to the short distance and merging with urban areas. In this case, solar and wind were measured using the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) data of four Lazio province ports. Each RES was evaluated using 10 years of monthly data for mapping and 1 year of hourly data for potential assessment and energy converters installation. Furthermore, the time series method has been considered to design and develop better management of RESs for decision making monitoring the energy needs of ports. This time series method has been applied to the generated energy source based on various parameters of the RESs used in port
Tyrosine phosphatase activity in mitochondria: presence of Shp-2 phosphatase in mitochondria
Tyrosine phosphorylation by unidentified enzymes has been observed in mitochondria, with recent evidence indicating that non-receptorial tyrosine kinases belonging to the Src family, which represent key players in several transduction pathways, are constitutively present in mitochondria. The extent of protein phosphorylation reflects a coordination balance between the activities of specific kinases and phophatases. The present study demonstrates that purified rat brain mitochondria possess endogenous tyrosine phosphatase activity. Mitochondrial phosphatases were found to be capable of dephosphorylating different exogenous substrates, including paranitrophenylphosphate, P-32-poly(Glu-Tyr)(4:1) and P-32-angiotensin. These activities are strongly inhibited by peroxovanadate, a well-known inhibitor of tyrosine phosphatases, but not by inhibitors of alkali or Ser/Thr phosphatases, and mainly take place in the intermembrane space and outer mitochondrial membrane. Using a combination of approaches, we identified the tyrosine phosphatase Shp-2 in mitochondria. Shp-2 plays a crucial role in a number of intracellular signalling cascades and is probably involved in several human diseases. It thus represents the first tyrosine phosphatase shown to be present in mitochondria
Cytotoxicity of spermine oxidation products to multidrug resistant melanoma M14 ADR2 cells: Sensitization by the MDL 72527 lysosomotropic compound
It has been confirmed that multidrug resistant (MDR) human melanoma cells are more sensitive than their wild-type counterparts to H(2)O(2) and aldehydes, the products of bovine serum amine oxidase (BSAO)-catalyzed oxidation of spermine. The metabolites formed by BSAO and spermine are more toxic than exogenous H(2)O(2) and acrolein, even thou-h their concentration is lower during the initial phase of incubation due to their more gradual release than the exogenous products. Both wild-type and MDR cells, after pre-treatment with MDL 72527, an inactivator of polyamine oxidase and a lysosomotropic compound, show to be sensitized to subsequent exposure to BSAO/spermine. Evidence of ultrastructural aberrations and acridine orange release from lysosomes is presented in this work that is in favor of the permeabilization of the lysosomal membrane as the major cause of sensitization by MDL 72527. Owing to its lysosomotropic effect, pre-treatment with MDL 72527 amplifies the ability of the metabolites formed from spermine by oxidative deamination to induce cell death. Since it is conceivable that combined treatment with a lysosomotropic compound and BSAO/spermine would be effective against tumor cells, it is of interest to search for such novel compounds, which might be promising for application in a therapeutic setting
- …