3,957 research outputs found

    Relating the description of gluon production in pA collisions and parton energy loss in AA collisions

    Full text link
    We calculate the classical gluon field of a fast projectile passing through a dense medium. We show that this allows us to calculate both the initial state gluon production in proton-nucleus collisions and the final state gluon radiation off a hard parton produced in nucleus-nucleus collisions. This unified description of these two phenomena makes the relation between the saturation scale QsQ_s and the transport coefficient q^\hat q more transparent. Also, we discuss the validity of the eikonal approximation for gluon propagation inside the nucleus in proton-nucleus collisions at RHIC energy.Comment: 18 pages, 3 figure

    Anomalous mass dependence of radiative quark energy loss in a finite-size quark-gluon plasma

    Full text link
    We demonstrate that for a finite-size quark-gluon plasma the induced gluon radiation from heavy quarks is stronger than that for light quarks when the gluon formation length becomes comparable with (or exceeds) the size of the plasma. The effect is due to oscillations of the light-cone wave function for the in-medium qgqq\to gq transition. The dead cone model by Dokshitzer and Kharzeev neglecting quantum finite-size effects is not valid in this regime. The finite-size effects also enhance the photon emission from heavy quarks.Comment: 8 pages, 3 figure

    Transverse Spectra of Radiation Processes in Medium

    Get PDF
    We develop a formalism for evaluation of the transverse momentum dependence of cross sections of the radiation processes in medium. The analysis is based on the light-cone path integral approach to the induced radiation. The results are applicable in both QED and QCD

    The role of finite kinematic bounds in the induced gluon emission from fast quarks in a finite size quark-gluon plasma

    Full text link
    We study the influence of finite kinematic boundaries on the induced gluon radiation from a fast quark in a finite size quark-gluon plasma. The calculations are carried out for fixed and running coupling constant. We find that for running coupling constant the kinematic correction to the radiative energy loss is small for quark energy larger than about 5 GeV. Our results differ both analytically and numerically from that obtained by the GLV group [6]. The effect of the kinematic cut-offs is considerably smaller than reported in [6].Comment: 11 pages, 4 figure

    Radiative parton energy loss and jet quenching in high-energy heavy-ion collisions

    Full text link
    We study within the light-cone path integral approach [3] the effect of the induced gluon radiation on high-p_{T} hadrons in high-energy heavy-ion collisions. The induced gluon spectrum is represented in a new form which is convenient for numerical simulations. For the first time, computations are performed with a realistic parametrization of the dipole cross section. The results are in reasonable agreement with suppression of high-p_{T} hadrons in Au+Au collisions at \sqrt{s}=200 GeV observed at RHIC.Comment: 12 pages, 3 epsi figures. Typos correcte

    Collinear Photon Emission from the Quark-Gluon Plasma: The Light-Cone Path Integral Formulation

    Get PDF
    We give a simple physical derivation of the photon emission rate from the weakly coupled quark-gluon plasma connected with the collinear processes qγqq\to \gamma q and qqˉγq\bar{q}\to \gamma. The analysis is based on the light-cone path integral approach to the induced radiation. Our results agree with that by Arnold, Moore and Yaffe obtained using the real-time thermal perturbation theory. It is demonstrated that the solution of the AMY integral equation is nothing but the time-integrated Green's function of the light-cone path integral approach written in the momentum representation.Comment: 12 pages, 2 figure

    Elastic energy loss and longitudinal straggling of a hard jet

    Get PDF
    The elastic energy loss encountered by jets produced in deep-inelastic scattering (DIS) off a large nucleus is studied in the collinear limit. In close analogy to the case of (non-radiative) transverse momentum broadening, which is dependent on the medium transport coefficient q^\hat{q}, a class of medium enhanced higher twist operators which contribute to the non-radiative loss of the forward light-cone momentum of the jet (qq^-) are identified and the leading correction in the limit of asymptotically high qq^- is isolated. Based on these operator products, a new transport coefficient e^\hat{e} is motivated which quantifies the energy loss per unit length encountered by the hard jet. These operator products are then computed, explicitly, in the case of a similar hard jet traversing a deconfined quark-gluon-plasma (QGP) in the hard-thermal-loop (HTL) approximation. This is followed by an evaluation of sub-leading contributions which are suppressed by the light-cone momentum qq^-, which yields the longitudinal "straggling" i.e., a slight change in light cone momentum due to the Brownian propagation through a medium with a fluctuating color field.Comment: 5 pages, 1 figure, Revtex

    Induced photon emission from quark jets in ultrarelativistic heavy-ion collisions

    Full text link
    We study the induced photon bremsstrahlung from a fast quark produced in AA-collisions due to multiple scattering in quark-gluon plasma. For RHIC and LHC conditions the induced photon spectrum is sharply peaked at photon energy close to the initial quark energy. In this region the contribution of the induced radiation to the photon fragmentation function exceeds the ordinary vacuum radiation. Contrary to previous analyses our results show that at RHIC and LHC energies the final-state interaction effects in quark-gluon plasma do not suppress the direct photon production, and even may enhance it at p_{T} about 5-15 GeV.Comment: 11 pages, 4 figure

    Weak Wave Turbulence Scaling Theory for Diffusion and Relative Diffusion in Turbulent Surface Waves

    Get PDF
    We examine the applicability of the weak wave turbulence theory in explaining experimental scaling results obtained for the diffusion and relative diffusion of particles moving on turbulent surface waves. For capillary waves our theoretical results are shown to be in good agreement with experimental results, where a distinct crossover in diffusive behavior is observed at the driving frequency. For gravity waves our results are discussed in the light of ocean wave studies.Comment: 5 pages; for related work visit http://www.imedea.uib.es/~victo

    Weak Turbulent Kolmogorov Spectrum for Surface Gravity Waves

    Full text link
    We study the long-time evolution of gravity waves on deep water exited by the stochastic external force concentrated in moderately small wave numbers. We numerically implement the primitive Euler equations for the potential flow of an ideal fluid with free surface written in canonical variables, using expansion of the Hamiltonian in powers of nonlinearity of up to fourth order terms. We show that due to nonlinear interaction processes a stationary energy spectrum close to kk7/2|k| \sim k^{-7/2} is formed. The observed spectrum can be interpreted as a weak-turbulent Kolmogorov spectrum for a direct cascade of energy.Comment: 4 pages, 5 figure
    corecore