15,418 research outputs found

    Magnetic fields of intermediate mass T Tauri stars

    Full text link
    Aims. In this paper, we aim to measure the strength of the surface magnetic fields for a sample of five intermediate mass T Tauri stars and one low mass T Tauri star from late-F to mid-K spectral types. While magnetic fields of T Tauri stars at the low mass range have been extensively characterized, our work complements previous studies towards the intermediate mass range; this complementary study is key to evaluate how magnetic fields evolve during the transition from a convective to a radiative core. Methods. We studied the Zeeman broadening of magnetically sensitive spectral lines in the H-band spectra obtained with the CRIRES high-resolution near-infrared spectrometer. These data are modelled using magnetic spectral synthesis and model atmospheres. Additional constraints on non-magnetic line broadening mechanisms are obtained from modelling molecular lines in the K band or atomic lines in the optical wavelength region. Results. We detect and measure mean surface magnetic fields for five of the six stars in our sample: CHXR 28, COUP 107, V2062 Oph, V1149 Sco, and Par 2441. Magnetic field strengths inferred from the most magnetically sensitive diagnostic line range from 0.8 to 1.8 kG. We also estimate a magnetic field strength of 1.9 kG for COUP 107 from an alternative diagnostic. The magnetic field on YLW 19 is the weakest in our sample and is marginally detected, with a strength of 0.8 kG. Conclusions. We populate an uncharted area of the pre-main-sequence HR diagram with mean magnetic field measurements from high-resolution near-infrared spectra. Our sample of intermediate mass T Tauri stars in general exhibits weaker magnetic fields than their lower mass counterparts. Our measurements will be used in combination with other spectropolarimetric studies of intermediate mass and lower mass T Tauri stars to provide input into pre-main-sequence stellar evolutionary models.Comment: 8 pages, 8 figures, accepted for publication in Astronomy and Astrophysic

    Comparative study of radio pulses from simulated hadron-, electron-, and neutrino-initiated showers in ice in the GeV-PeV range

    Full text link
    High energy particle showers produce coherent Cherenkov radio emission in dense, radio-transparent media such as cold ice. Using PYTHIA and GEANT simulation tools, we make a comparative study among electromagnetic (EM) and hadronic showers initiated by single particles and neutrino showers initiated by multiple particles produced at the neutrino-nucleon event vertex. We include all the physics processes and do a complete 3-D simulation up to 100 TeV for all showers and to 1 PeV for electron and neutrino induced showers. We calculate the radio pulses for energies between 100 GeV and 1 PeV and find hadron showers, and consequently neutrino showers, are not as efficient below 1 PeV at producing radio pulses as the electromagnetic showers. The agreement improves as energy increases, however, and by a PeV and above the difference disappears. By looking at the 3-D structure of the showers in time, we show that the hadronic showers are not as compact as the EM showers and hence the radiation is not as coherent as EM shower emission at the same frequency. We show that the ratio of emitted pulse strength to shower tracklength is a function only of a single, coherence parameter, independent of species and energy of initiating particle.Comment: a few comments added, to bo published in PRD Nov. issue, 10 pages, 3 figures in tex file, 3 jpg figures in separate files, and 1 tabl

    Asymptotic Behaviour of the Proper Length and Volume of the Schwarzschild Singularity

    Full text link
    Though popular presentations give the Schwarzschild singularity as a point it is known that it is spacelike and not timelike. Thus it has a "length" and is not a "point". In fact, its length must necessarily be infinite. It has been proved that the proper length of the Qadir-Wheeler suture model goes to infinity [1], while its proper volume shrinks to zero, and the asymptotic behaviour of the length and volume have been calculated. That model consists of two Friedmann sections connected by a Schwarzschild "suture". The question arises whether a similar analysis could provide the asymptotic behaviour of the Schwarzschild black hole near the singularity. It is proved here that, unlike the behaviour for the suture model, for the Schwarzschild essential singularity Δs\Delta s \thicksim K1/3lnKK^{1/3}\ln K and VV\thicksim K1lnKK^{-1}\ln K, where KK is the mean extrinsic curvature, or the York time.Comment: 13 pages, 1 figur

    The Coronal Structure of AB Doradus

    Full text link
    We perform a numerical simulation of the corona of the young, rapidly rotating K0 dwarf AB Doradus using a global MHD model. The model is driven by a surface map of the radial magnetic field constructed using Zeeman-Doppler Imaging. We find that the global structure of the stellar corona is dominated by strong azimuthal tangling of the magnetic field due to the rapid rotation. The MHD solution enables us to calculate realistic Alfv\'en surfaces and we can therefore estimate the stellar mass loss rate and angular momentum loss rate without making undue theoretical simplifications. We consider three cases, parametrized by the base density of the corona, that span the range of possible solutions for the system. We find that overall, the mass and angular-momentum loss rates are higher than in the solar case; the mass loss rates are 10 to 500 times higher, and the angular momentum loss rate can be up to 3×1043\times{10}^4 higher than present day solar values. Our simulations show that this model can be use to constrain the wide parameter space of stellar systems. It also shows that an MHD approach can provide more information about the physical system over the commonly used potential field extrapolation.Comment: 13 pages, 7 figure

    Complex magnetic topology and strong differential rotation on the low-mass T Tauri star V2247 Oph

    Full text link
    From observations collected with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we report the detection of Zeeman signatures on the low-mass classical TTauri star (cTTS) V2247Oph. Profile distortions and circular polarisation signatures detected in photospheric lines can be interpreted as caused by cool spots and magnetic regions at the surface of the star. The large-scale field is of moderate strength and highly complex; moreover, both the spot distribution and the magnetic field show significant variability on a timescale of only one week, as a likely result of strong differential rotation. Both properties make V2247Oph very different from the (more massive) prototypical cTTS BPTau; we speculate that this difference reflects the lower mass of V2247Oph. During our observations, V2247Oph was in a low-accretion state, with emission lines showing only weak levels of circular polarisation; we nevertheless find that excess emission apparently concentrates in a mid-latitude region of strong radial field, suggesting that it is the footpoint of an accretion funnel. The weaker and more complex field that we report on V2247Oph may share similarities with those of very-low-mass late-M dwarfs and potentially explain why low-mass cTTSs rotate on average faster than intermediate mass ones. These surprising results need confirmation from new independent data sets on V2247Oph and other similar low-mass cTTSs.Comment: MNRAS (in press) - 12 pages, 9 figure

    UVMag: stellar formation, evolution, structure and environment with space UV and visible spectropolarimetry

    Full text link
    Important insights into the formation, structure, evolution and environment of all types of stars can be obtained through the measurement of their winds and possible magnetospheres. However, this has hardly been done up to now mainly because of the lack of UV instrumentation available for long periods of time. To reach this aim, we have designed UVMag, an M-size space mission equipped with a high-resolution spectropolarimeter working in the UV and visible spectral range. The UV domain is crucial in stellar physics as it is very rich in atomic and molecular lines and contains most of the flux of hot stars. Moreover, covering the UV and visible spectral domains at the same time will allow us to study the star and its environment simultaneously. Adding polarimetric power to the spectrograph will multiply tenfold the capabilities of extracting information on stellar magnetospheres, winds, disks, and magnetic fields. Examples of science objectives that can be reached with UVMag are presented for pre-main sequence, main sequence and evolved stars. They will cast new light onto stellar physics by addressing many exciting and important questions. UVMag is currently undergoing a Research and Technology study and will be proposed at the forthcoming ESA call for M-size missions. This spectropolarimeter could also be installed on a large UV and visible observatory (e.g. NASA's LUVOIR project) within a suite of instruments.Comment: Accepted in ApSS's special volume on UV astronom

    Tuberculosis diagnosis and treatment practices of private physicians in Karachi, Pakistan

    Get PDF
    In a densely populated urban area of Karachi, Pakistan, a questionnaire survey was made of the knowledge and practices of 120 private general practitioners about the diagnosis and treatment of tuberculosis (TB). The majority knew that cough, fever and weight loss were the main symptoms of TB, but less than half knew that blood in sputum, poor appetite and chest pain were associated with the disease. Only 58.3% of physicians used sputum microscopy for diagnosing TB and 35.0% used it as a follow-up test. Only 41.7% treated TB patients themselves, the remaining referring their patients to specialists. Around 73.3% of the doctors were aware of the 4 first-line anti-TB drugs. Efforts to improve the knowledge of private practitioners, and strategies to enhance public-private collaboration forTB control in urban areas are urgently required

    Multi-wavelength observing of a forming solar-like star

    Full text link
    V2129 Oph is a 1.35 solar mass classical T Tauri star, known to possess a strong and complex magnetic field. By extrapolating from an observationally derived magnetic surface map, obtained through Zeeman-Doppler imaging, models of V2129 Oph's corona have been constructed, and used to make predictions regarding the global X-ray emission measure, the amount of modulation of X-ray emission, and the density of accretion shocks. In late June 2009 we will under take an ambitious multi-wavelength, multi-observing site, and near contemporaneous campaign, combining spectroscopic optical, nIR, UV, X-ray, spectropolarimetric and photometric monitoring. This will allow the validity of the 3D field topologies derived via field extrapolation to be determined.Comment: 4 pages, proceedings of the 3rd MSSL workshop on High Resolution X-ray Spectroscopy: towards IX
    corecore