31,662 research outputs found

    Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor

    Get PDF
    We report the transfer of phase structure and, in particular, of orbital angular momentum from near-infrared pump light to blue light generated in a four-wave-mixing process in Rb-85 vapor. The intensity and phase profile of the two pump lasers at 780 and 776 nm, shaped by a spatial light modulator, influences the phase and intensity profile of light at 420 nm, which is generated in a subsequent coherent cascade. In particular, we observe that the phase profile associated with orbital angular momentum is transferred entirely from the pump light to the blue. Pumping with more complicated light profiles results in the excitation of spatial modes in the blue that depend strongly on phase matching, thus demonstrating the parametric nature of the mode transfer. These results have implications on the inscription and storage of phase information in atomic gases

    Study of certain launching techniques using long orbiting tethers

    Get PDF
    A study of the basic equations governing orbital transfers using long orbiting tethers is presented. A very simple approximation to the general transfer equation is derived for the case of short tethers and low eccentricity orbits. Numerical examples are calculated for the case of injection into a circular orbit from a platform in eccentric orbit and injection into eccentric orbit from a platform in circular orbit. For the case of long tethers, a method is derived for reducing tether mass and increasing payload mass by tapering the tether to maintain constant stress per unit of tether cross section. Formulas are presented for calculating the equilibrium orbital parameters taking into account the mass of the platform, tether, and payload

    A weakly random Universe?

    Full text link
    The cosmic microwave background (CMB) radiation is characterized by well-established scales, the 2.7 K temperature of the Planckian spectrum and the 10−510^{-5} amplitude of the temperature anisotropy. These features were instrumental in indicating the hot and equilibrium phases of the early history of the Universe and its large scale isotropy, respectively. We now reveal one more intrinsic scale in CMB properties. We introduce a method developed originally by Kolmogorov, that quantifies a degree of randomness (chaos) in a set of numbers, such as measurements of the CMB temperature in some region. Considering CMB as a composition of random and regular signals, we solve the inverse problem of recovering of their mutual fractions from the temperature sky maps. Deriving the empirical Kolmogorov's function in the Wilkinson Microwave Anisotropy Probe's maps, we obtain the fraction of the random signal to be about 20 per cent, i.e. the cosmological sky is a weakly random one. The paper is dedicated to the memory of Vladimir Arnold (1937-2010).Comment: 4 pages, 3 figs, A & A (Lett) in press; to match the published versio

    Adaptive reflection and focusing of Bose-Einstein condensates

    Full text link
    We report adjustable magnetic `bouncing' and focusing of a dilute 87^{87}Rb Bose gas. Both the condensate production and manipulation are realised using a particularly straight-forward apparatus. The bouncing region is comprised of approximately concentric ellipsoidal magnetic equipotentials with a centre that can be adjusted vertically. We extend, and discuss the limitations of, simple Thomas-Fermi and Monte-Carlo theoretical models for the bouncing, which at present find close agreement with the condensate's evolution. Very strong focusing has been inferred and the observation of atomic matter-wave diffraction should be possible. Prospects look bright for applications in matter-wave atom-optics, due to the very smooth nature of the mirror

    Degree of randomness: numerical experiments for astrophysical signals

    Full text link
    Astrophysical and cosmological signals such as the cosmic microwave background radiation, as observed, typically contain contributions of different components, and their statistical properties can be used to distinguish one from the other. A method developed originally by Kolmogorov is involved for the study of astrophysical signals of randomness of various degrees. Numerical performed experiments based on the universality of Kolmogorov distribution and using a single scaling of the ratio of stochastic to regular components, reveal basic features in the behavior of generated signals also in terms of a critical value for that ratio, thus enable the application of this technique for various observational datasetsComment: 6 pages, 9 figures; Europhys.Letters; to match the published versio

    A simple extended-cavity diode laser

    Get PDF
    Operating a laser diode in an extended cavity which provides frequency-selective feedback is a very effective method of reducing the laser's linewidth and improving its tunability. We have developed an extremely simple laser of this type, built from inexpensive commercial components with only a few minor modifications, A 780 nm laser built to this design has an output power of 80 mW, a Linewidth of 350 kHz, and it has been continuously locked to a Doppler-free rubidium transition for several days

    On the accuracy of conservation of adiabatic invariants in slow-fast systems

    Full text link
    Let the adiabatic invariant of action variable in slow-fast Hamiltonian system with two degrees of freedom have two limiting values along the trajectories as time tends to infinity. The difference of two limits is exponentially small in analytic systems. An iso-energetic reduction and canonical transformations are applied to transform the slow-fast systems to form of systems depending on slowly varying parameters in a complexified phase space. On the basis of this method an estimate for the accuracy of conservation of adiabatic invariant is given for such systems.Comment: 27 pages, 14 figure

    Pionic Color Transparency

    Full text link
    We use a semi-classical approximation to investigate the effects of color transparency on pion electroproduction reactions. The resulting reduced nuclear interactions produce significant, but not dominating, differences with the results of conventional distorted-wave, Glauber-type treatments at kinematics accessible to Jefferson Laboratory. Nuclear effects that could mimic the influence of color transparency are also discussed.Comment: 10 pages, 6 figure

    Development of aircraft lavatory compartments with improved fire resistance characteristics, phase 1: Fire containment test of a wide body aircraft lavatory module

    Get PDF
    A test was conducted to evaluate the fire containment characteristics of a Boeing 747 lavatory module. Results showed that the fire was contained within the lavatory during the 30-minute test period with the door closed. The resistance of the lavatory wall and ceiling panels and general lavatory construction to burn-through under the test conditions was demonstrated

    Global Theory of Quantum Boundary Conditions and Topology Change

    Full text link
    We analyze the global theory of boundary conditions for a constrained quantum system with classical configuration space a compact Riemannian manifold MM with regular boundary Γ=∂M\Gamma=\partial M. The space \CM of self-adjoint extensions of the covariant Laplacian on MM is shown to have interesting geometrical and topological properties which are related to the different topological closures of MM. In this sense, the change of topology of MM is connected with the non-trivial structure of \CM. The space \CM itself can be identified with the unitary group \CU(L^2(\Gamma,\C^N)) of the Hilbert space of boundary data L^2(\Gamma,\C^N). A particularly interesting family of boundary conditions, identified as the set of unitary operators which are singular under the Cayley transform, \CC_-\cap \CC_+ (the Cayley manifold), turns out to play a relevant role in topology change phenomena. The singularity of the Cayley transform implies that some energy levels, usually associated with edge states, acquire an infinity energy when by an adiabatic change the boundary condition reaches the Cayley submanifold \CC_-. In this sense topological transitions require an infinite amount of quantum energy to occur, although the description of the topological transition in the space \CM is smooth. This fact has relevant implications in string theory for possible scenarios with joint descriptions of open and closed strings. In the particular case of elliptic self--adjoint boundary conditions, the space \CC_- can be identified with a Lagrangian submanifold of the infinite dimensional Grassmannian. The corresponding Cayley manifold \CC_- is dual of the Maslov class of \CM.Comment: 29 pages, 2 figures, harvma
    • …
    corecore