1,008 research outputs found
Parietal maps of visual signals for bodily action planning
The posterior parietal cortex (PPC) has long been understood as a high-level integrative station for computing motor commands for the body based on sensory (i.e., mostly tactile and visual) input from the outside world. In the last decade, accumulating evidence has shown that the parietal areas not only extract the pragmatic features of manipulable objects, but also subserve sensorimotor processing of others’ actions. A paradigmatic case is that of the anterior intraparietal area (AIP), which encodes the identity of observed manipulative actions that afford potential motor actions the observer could perform in response to them. On these bases, we propose an AIP manipulative action-based template of the general planning functions of the PPC and review existing evidence supporting the extension of this model to other PPC regions and to a wider set of actions: defensive and locomotor actions. In our model, a hallmark of PPC functioning is the processing of information about the physical and social world to encode potential bodily actions appropriate for the current context. We further extend the model to actions performed with man-made objects (e.g., tools) and artifacts, because they become integral parts of the subject’s body schema and motor repertoire. Finally, we conclude that existing evidence supports a generally conserved neural circuitry that transforms integrated sensory signals into the variety of bodily actions that primates are capable of preparing and performing to interact with their physical and social world
Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites
Drug resistant focal epilepsy can be treated by resecting the epileptic focus
requiring a precise focus localization using stereoelectroencephalography
(SEEG) probes. As commercial SEEG probes offer only a limited spatial
resolution, probes of higher channel count and design freedom enabling the
incorporation of macro and microelectrodes would help increasing spatial
resolution and thus open new perspectives for investigating mechanisms
underlying focal epilepsy and its treatment. This work describes a new
fabrication process for SEEG probes with materials and dimensions similar to
clinical probes enabling recording single neuron activity at high spatial
resolution. Polyimide is used as a biocompatible flexible substrate into which
platinum electrodes and leads are...
The resulting probe features match those of clinically approved devices.
Tests in saline solution confirmed the probe stability and functionality.
Probes were implanted into the brain of one monkey (Macaca mulatta), trained to
perform different motor tasks. Suitable configurations including up to 128
electrode sites allow the recording of task-related neuronal signals. Probes
with 32 and 64 electrode sites were implanted in the posterior parietal cortex.
Local field potentials and multi-unit activity were recorded as early as one
hour after implantation. Stable single-unit activity was achieved for up to 26
days after implantation of a 64-channel probe. All recorded signals showed
modulation during task execution. With the novel probes it is possible to
record stable biologically relevant data over a time span exceeding the usual
time needed for epileptic focus localization in human patients. This is the
first time that single units are recorded along cylindrical polyimide probes
chronically implanted 22 mm deep into the brain of a monkey, which suggests the
potential usefulness of this probe for human applications
From Observed Action Identity to Social Affordances
Others' observed actions cause continuously changing retinal images, making it challenging to build neural representations of action identity. The monkey anterior intraparietal area (AIP) and its putative human homologue (phAIP) host neurons selective for observed manipulative actions (OMAs). The neuronal activity of both AIP and phAIP allows a stable readout of OMA identity across visual formats, but human neurons exhibit greater invariance and generalize from observed actions to action verbs. These properties stem from the convergence in AIP of superior temporal signals concerning: (i) observed body movements; and (ii) the changes in the body-object relationship. We propose that evolutionarily preserved mechanisms underlie the specification of observed-actions identity and the selection of motor responses afforded by them, thereby promoting social behavior
Obscuration in AGNs: near-infrared luminosity relations and dust colors
We combine two approaches to isolate the AGN luminosity at near-infrared
wavelengths and relate the near-IR pure AGN luminosity to other tracers of the
AGN. Using integral-field spectroscopic data of an archival sample of 51 local
AGNs, we estimate the fraction of non-stellar light by comparing the nuclear
equivalent width of the stellar 2.3 micron CO absorption feature with the
intrinsic value for each galaxy. We compare this fraction to that derived from
a spectral decomposition of the integrated light in the central arc second and
find them to be consistent with each other. Using our estimates of the near-IR
AGN light, we find a strong correlation with presumably isotropic AGN tracers.
We show that a significant offset exists between type 1 and type 2 sources in
the sense that type 1 sources are 7 (10) times brighter in the near-IR at log
L_MIR = 42.5 (log L_X = 42.5). These offsets only becomes clear when treating
infrared type 1 sources as type 1 AGNs.
All AGNs have very red near-to-mid-IR dust colors. This, as well as the range
of observed near-IR temperatures, can be explained with a simple model with
only two free parameters: the obscuration to the hot dust and the ratio between
the warm and hot dust areas. We find obscurations of A_V (hot) = 5 - 15 mag for
infrared type 1 sources and A_V (hot) = 15 - 35 mag for type 2 sources. The
ratio of hot dust to warm dust areas of about 1000 is nicely consistent with
the ratio of radii of the respective regions as found by infrared
interferometry.Comment: 17 pages, 10 Figures, 3 Tables, accepted by A&
A shared neural substrate for action verbs and observed actions in human posterior parietal cortex
High-level sensory and motor cortical areas are activated when processing the meaning of language, but it is unknown whether, and how, words share a neural substrate with corresponding sensorimotor representations. We recorded from single neurons in human posterior parietal cortex (PPC) while participants viewed action verbs and corresponding action videos from multiple views. We find that PPC neurons exhibit a common neural substrate for action verbs and observed actions. Further, videos were encoded with mixtures of invariant and idiosyncratic responses across views. Action verbs elicited selective responses from a fraction of these invariant and idiosyncratic neurons, without preference, thus associating with a statistical sampling of the diverse sensory representations related to the corresponding action concept. Controls indicated that the results are not the product of visual imagery or arbitrary learned associations. Our results suggest that language may activate the consolidated visual experience of the reader
The neural substrate of orientation short-term memory and resistance to distractor items
Abstract We used Positron Emission Tomography to map the neural substrate of human short-term memory for orientation, de®ned as retaining a single orientation in memory over a long delay, by comparing a successive discrimination task with a 6-s delay to the same task with a brief 0.3 s delay and to an identi®cation control task. Short-term memory engaged the superior parietal lobe bilaterally, the middle occipital gyrus bilaterally and the left dorsolateral prefrontal cortex. In addition, we studied the resistance to a distractor item by comparing the successive discrimination task with long delay, with and without an intervening distractor stimulus. This manipulative process engaged left ventral premotor cortex and left dorsolateral prefrontal cortex. The activation of left dorsolateral prefrontal cortex is interpreted as re¯ecting co-ordination between task components. These results, combined with those of two previous studies using an identical reduction strategy, underscore the functional heterogeneity in the prefrontal cortex during short-term and working memory
- …