1,127 research outputs found
Dual Rate Control for Security in Cyber-physical Systems
We consider malicious attacks on actuators and sensors of a feedback system
which can be modeled as additive, possibly unbounded, disturbances at the
digital (cyber) part of the feedback loop. We precisely characterize the role
of the unstable poles and zeros of the system in the ability to detect stealthy
attacks in the context of the sampled data implementation of the controller in
feedback with the continuous (physical) plant. We show that, if there is a
single sensor that is guaranteed to be secure and the plant is observable from
that sensor, then there exist a class of multirate sampled data controllers
that ensure that all attacks remain detectable. These dual rate controllers are
sampling the output faster than the zero order hold rate that operates on the
control input and as such, they can even provide better nominal performance
than single rate, at the price of higher sampling of the continuous output
Target Assignment in Robotic Networks: Distance Optimality Guarantees and Hierarchical Strategies
We study the problem of multi-robot target assignment to minimize the total
distance traveled by the robots until they all reach an equal number of static
targets. In the first half of the paper, we present a necessary and sufficient
condition under which true distance optimality can be achieved for robots with
limited communication and target-sensing ranges. Moreover, we provide an
explicit, non-asymptotic formula for computing the number of robots needed to
achieve distance optimality in terms of the robots' communication and
target-sensing ranges with arbitrary guaranteed probabilities. The same bounds
are also shown to be asymptotically tight.
In the second half of the paper, we present suboptimal strategies for use
when the number of robots cannot be chosen freely. Assuming first that all
targets are known to all robots, we employ a hierarchical communication model
in which robots communicate only with other robots in the same partitioned
region. This hierarchical communication model leads to constant approximations
of true distance-optimal solutions under mild assumptions. We then revisit the
limited communication and sensing models. By combining simple rendezvous-based
strategies with a hierarchical communication model, we obtain decentralized
hierarchical strategies that achieve constant approximation ratios with respect
to true distance optimality. Results of simulation show that the approximation
ratio is as low as 1.4
Enhancing the selective extracellular location of a recombinant E. coli domain antibody by management of fermentation conditions
The preparation of a recombinant protein using Escherichia coli often involves a challenging primary recovery sequence. This is due to the inability to secrete the protein to the extracellular space without a significant degree of cell lysis. This results in the release of nucleic acids, leading to a high viscosity, difficulty to clarify, broth and also to contamination with cell materials such as lipopolysaccharides and host cell proteins. In this paper, we present different fermentation strategies to facilitate the recovery of a V H domain antibody (13.1 kDa) by directing it selectively to the extracellular space and changing the balance between domain antibody to nucleic acid release. The manipulation of the cell growth rate in order to increase the outer cell membrane permeability gave a small ~1.5-fold improvement in released domain antibody to nucleic acid ratio without overall loss of yield. The introduction during fermentation of release agents such as EDTA gave no improvement in the ratio of released domain antibody to nucleic acid and a loss of overall productivity. The use of polyethyleneimine (PEI) during fermentation was with the aim to (a) permeabilise the outer bacterial membrane to release selectively domain antibody and (b) remove selectively by precipitation nucleic acids released during cell lysis. This strategy resulted in up to ~4-fold increase in the ratio of domain antibody to soluble nucleic acid with no reduction in domain antibody overall titre. In addition, a reduction in host cell protein contamination was achieved and there was no increase in endotoxin levels. Similar results were demonstrated with a range of other antibody products prepared in E. coli
Searching in Unstructured Overlays Using Local Knowledge and Gossip
This paper analyzes a class of dissemination algorithms for the discovery of
distributed contents in Peer-to-Peer unstructured overlay networks. The
algorithms are a mix of protocols employing local knowledge of peers'
neighborhood and gossip. By tuning the gossip probability and the depth k of
the k-neighborhood of which nodes have information, we obtain different
dissemination protocols employed in literature over unstructured P2P overlays.
The provided analysis and simulation results confirm that, when properly
configured, these schemes represent a viable approach to build effective P2P
resource discovery in large-scale, dynamic distributed systems.Comment: A revised version of the paper appears in Proc. of the 5th
International Workshop on Complex Networks (CompleNet 2014) - Studies in
Computational Intelligence Series, Springer-Verlag, Bologna (Italy), March
201
Evaluation of options for harvest of a recombinant E. coli fermentation producing a domain antibody using ultra scale-down techniques and pilot-scale verification
Ultra scale-down (USD) methods operating at the millilitre scale were used to characterise full-scale processing of E. coli fermentation broths autolysed to different extents for release of a domain antibody. The focus was on the primary clarification stages involving continuous centrifugation followed by depth filtration. The performance of this sequence was predicted by USD studies to decrease significantly with increased extents of cell lysis. The use of polyethyleneimine (PEI) reagent was studied to treat the lysed cell broth by precipitation of soluble contaminants such as DNA and flocculation of cell debris material. The USD studies were used to predict the impact of this treatment on the performance and here it was found that the fermentation could be run to maximum productivity using an acceptable clarification process (e.g a centrifugation stage operating at 0.11 L per m(2) equivalent gravity settling area per h followed by a resultant required depth filter area of 0.07 m(2) per L supernatant). A range of USD predictions was verified at the pilot scale for centrifugation followed by depth filtration. This article is protected by copyright. All rights reserved
First Results from The GlueX Experiment
The GlueX experiment at Jefferson Lab ran with its first commissioning beam
in late 2014 and the spring of 2015. Data were collected on both plastic and
liquid hydrogen targets, and much of the detector has been commissioned. All of
the detector systems are now performing at or near design specifications and
events are being fully reconstructed, including exclusive production of
, and mesons. Linearly-polarized photons were
successfully produced through coherent bremsstrahlung and polarization transfer
to the has been observed.Comment: 8 pages, 6 figures, Invited contribution to the Hadron 2015
Conference, Newport News VA, September 201
Search for composite and exotic fermions at LEP 2
A search for unstable heavy fermions with the DELPHI detector at LEP is
reported. Sequential and non-canonical leptons, as well as excited leptons and
quarks, are considered. The data analysed correspond to an integrated
luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV
and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172
GeV and 161 GeV. The search for pair-produced new leptons establishes 95%
confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2,
depending on the channel. The search for singly produced excited leptons and
quarks establishes upper limits on the ratio of the coupling of the excited
fermio
- …
