58 research outputs found

    Transmission Coefficient as a Three-Point Retarded Function

    Full text link
    We show that the transmission probability through a small interacting region connected to noninteracting leads, can be written in terms of a retarded product of a three-point correlation function defined in the real time. Our proof is based on the Kubo formalism, and uses an Eliashberg theory for analytic properties of vertex functions. The aim of this short report is to add a new viewpoint to the transport theory described in the previous paper: A.O., J. Phys. Soc. Jpn. 70 (2001) 2666.Comment: 2 pages, 2 figures, submitted to J. Phys. Soc. Jp

    Electron-phonon coupling and its evidence in the photoemission spectra of lead

    Full text link
    We present a detailed study on the influence of strong electron-phonon coupling to the photoemission spectra of lead. Representing the strong-coupling regime of superconductivity, the spectra of lead show characteristic features that demonstrate the correspondence of physical properties in the normal and the superconducting state, as predicted by the Eliashberg theory. These features appear on an energy scale of a few meV and are accessible for photoemission only by using modern spectrometers with high resolution in energy and angle.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let

    The motion of superconducting vortices in thin films of varying thickness

    Get PDF
    The interaction of superconducting vortices with superconductor/vacuum interfaces is considered. A vortex is first shown to intersect such an interface normally. Various thin-film models are then formulated, corresponding to different parameter regimes. A local analysis of a vortex is performed, and a law of motion for each vortex deduced. This law of motion implies that the vortex will move to the locally thinnest part of the film, and is consistent with the vortex moving under the curvature induced by being forced to intersect the boundaries of the film normall

    Electrical Conductivity of Fermi Liquids. II. Quasiparticle Transport

    Full text link
    We develop a general theory of Fermi liquids to discuss the Kadowaki-Woods relation Aγ2A\propto \gamma^2. We derive a formula for the ratio A/γ2A/\gamma^2 which is expressed as a product of two dimensionless parameters α\alpha and FF, where α\alpha represents a coupling constant for quasiparticle scattering and FF is a geometric factor determined by the shape of the Fermi surface. Then we argue that the universal ratio observed in heavy fermion compounds is reproduced under the conditions α1\alpha\sim 1 and F20F\sim 20. The former is regarded as a universality of Fermi liquids in a strong coupling regime, and the latter is corroborated by evaluating FF definitely in simple cases. It is noted that the proportional relation is just an example of the universal phenomena to be expected for the whole class of strong coupling Fermi liquids.Comment: 28 pages, 7 figures; J. Phys. Soc. Jpn. Vol.67, No.1

    The mechanism of hole carrier generation and the nature of pseudogap- and 60K-phases in YBCO

    Full text link
    In the framework of the model assuming the formation of NUC on the pairs of Cu ions in CuO2_{2} plane the mechanism of hole carrier generation is considered and the interpretation of pseudogap and 60 K-phases in YBa2Cu3O6+δYBa_{2}Cu_{3}O_{6+\delta}. is offered. The calculated dependences of hole concentration in YBa2Cu3O6+δYBa_{2}Cu_{3}O_{6+\delta} on doping δ\delta and temperature are found to be in a perfect quantitative agreement with experimental data. As follows from the model the pseudogap has superconducting nature and arises at temperature T>Tc>TcT^{*}>T_{c\infty}>T_{c} in small clusters uniting a number of NUC's due to large fluctuations of NUC occupation. Here TcT_{c\infty} and TcT_{c} are the superconducting transition temperatures of infinite and finite clusters of NUC's, correspondingly. The calculated T(δ)T^{*}(\delta) and Tn(δ)T_{n}(\delta) dependences are in accordance with experiment. The area between T(δ)T^{*}(\delta) and Tn(δ)T_{n}(\delta) corresponds to the area of fluctuations where small clusters fluctuate between superconducting and normal states owing to fluctuations of NUC occupation. The results may serve as important arguments in favor of the proposed model of HTSC.Comment: 12 pages, 7 figure

    Relaxation Dynamics of Photoinduced Changes in the Superfluid Weight of High-Tc Superconductors

    Get PDF
    In the transient state of d-wave superconductors, we investigate the temporal variation of photoinduced changes in the superfluid weight. We derive the formula that relates the nonlinear response function to the nonequilibrium distribution function. The latter qunatity is obtained by solving the kinetic equation with the electron-electron and the electron-phonon interaction included. By numerical calculations, a nonexponential decay is found at low temperatures in contrast to the usual exponential decay at high temperatures. The nonexponential decay originates from the nonmonotonous temporal variation of the nonequilibrium distribution function at low energies. The main physical process that causes this behavior is not the recombination of quasiparticles as previous phenomenological studies suggested, but the absorption of phonons.Comment: 18 pages, 12 figures; to be published in J. Phys. Soc. Jpn. Vol. 80, No.

    Electrical Conductivity of Fermi Liquids. I. Many-body Effect on the Drude Weight

    Full text link
    On the basis of the Fermi liquid theory, we investigate the many-body effect on the Drude weight. In a lattice system, the Drude weight DD is modified by electron-electron interaction due to Umklapp processes, while it is not renormalized in a Galilean invariant system. This is explained by showing that the effective mass mm' for Dn/mD\propto n/m' is defined through the current, not velocity, of quasiparticle. It is shown that the inequality D>0D>0 is required for the stability against the uniform shift of the Fermi surface. The result of perturbation theory applied for the Hubbard model indicates that DD as a function of the density nn is qualitatively modified around half filling n1n\sim 1 by Umklapp processes.Comment: 20 pages, 2 figures; J. Phys. Soc. Jpn. Vol.67, No.

    Spin diffusion and relaxation in three-dimensional isotropic Heisenberg antiferromagnets

    Full text link
    A theory is proposed for kinetic effects in isotropic Heisenberg antiferromagnets at temperatures above the Neel point. A metod based on the analysis of a set of Feynman diagrams for the kinetic coefficients is developed for studying the critical dynamics. The scaling behavior of the generalized coefficient of spin diffusion and relaxation constant in the paramagnetic phase is studied in terms of the approximation of coupling modes. It is shown that the kinetic coefficients in an antiferromagnetic system are singular in the fluctuation region. The corresponding critical indices for diffusion and relaxation processes are calculated. The scaling dimensionality of the kinetic coefficients agrees with the predictions of dynamic scaling theory and a renormalization group analysis. The proposed theory can be used to study the momentum and frequency dependence of the kinetic parameters, and to determine the form of the scaling functions. The role of nonlocal correlations and spin-liquid effects in magnetic systems is briefly discussed.Comment: 10 pages, RevTeX, 3 EPS figures include

    On the mechanisms of superfluidity in atomic nuclei

    Full text link
    A system of equations is obtained for the Cooper gap in nuclei. The system takes two mechanisms of superfluidity into account in an approximation quadratic in the phonon- production amplitude : a Bardeen- Cooper- Schrieffer (BCS) type mechanism and a quasiparticle- phonon mechanism. These equations are solved for 120 Sn in a realistic approximation. If the simple procedures proposed are used to determine the new particle- particle interaction and to estimate the average effect, then the contribution of the quasiparticle- phonon mechanism to the observed width of the pairing gap is 26% and the BCS-type contribution is 74%. This means that at least in semimagic nuclei pairing is of a mixed nature - it is due to the two indicated mechanisms, the first being mainly a surface mechanism and the second mainly a volume mechanism.Comment: 6 page

    What are the experimentally observable effects of vertex corrections in superconductors?

    Full text link
    We calculate the effects of vertex corrections, of non-constant density of states and of a (self-consistently determined) phonon self-energy for the Holstein model on a 3D cubic lattice. We replace vertex corrections with a Coulomb pseudopotential, mu*, adjusted to give the same Tc, and repeat the calculations, to see which effects are a distinct feature of vertex corrections. This allows us to determine directly observable effects ofvertex corrections on a variety of thermodynamic properties of superconductors. To this end, we employ conserving approximations (in the local approximation) to calculate the superconducting critical temperatures, isotope coefficients, superconducting gaps, free-energy differences and thermodynamic critical fields for a range of parameters. We find that the dressed value of lambda is significantly larger than the bare value. While vertex corrections can cause significant changes in all the above quantities (even whenthe bare electron-phonon coupling is small), the changes can usually be well-modeled by an appropriate Coulomb pseudopotential. The isotope coefficient proves to be the quantity that most clearly shows effects of vertex corrections that can not be mimicked by a mu*.Comment: 28 pages, 12 figure
    corecore