202 research outputs found

    Two-dimensional solitons on the surface of magnetic fluids

    Get PDF
    We report an observation of a stable soliton-like structure on the surface of a ferrofluid, generated by a local perturbation in the hysteretic regime of the Rosensweig instability. Unlike other pattern-forming systems with localized 2D structures, magnetic fluids are characterized by energy conservation; hence their mechanism of soliton stabilization is different from the previously discussed gain/loss balance mechanism. The radioscopic measurements of the soliton's surface profile suggest that locking on the underlying periodic structure is instrumental in its stabilization.Comment: accepted for publication by Physical Review Letter

    The Detection of Multimodal Oscillations on Alpha UMa

    Full text link
    We have used the star camera on the WIRE satellite to observe the K0 III star Alpha UMa, and we report the apparent detection of 10 oscillation modes. The lowest frequency mode is at 1.82 microhertz, and appears to be the fundamental mode. The mean spacing between the mode frequencies is 2.94 microhertz, which implies that all detected modes are radial. The mode frequencies are consistent with the physical parameters of a K0 III star, if we assume that only radial modes are excited. Mode amplitudes are 100 -- 400 micromagnitudes, which is consistent with the scaling relation of Kjeldsen & Beddinge (1995).Comment: ApJ Letters, in press. 14 pages, including 3 figure

    The importance of organizational characteristics for improving outcomes in patients with chronic disease: a systematic review of congestive heart failure

    Get PDF
    Luci K. Leykum, Jacqueline Pugh, Valerie Lawrence, and Polly H. Noel are with the South Texas Veterans Health Care System and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio TX, 78229, USA -- Michael Parchman is with the South Texas Veterans Health Care System and Department of Family and Community Medicine, University of Texas Health Science Center at San Antonio, San Antonio TX, 78229, USA -- Reuben R. McDaniel Jr. is with the McComb's School of Business, University of Texas at Austin, Austin TX, USABackground: Despite applications of models of care and organizational or system-level interventions to improve patient outcomes for chronic disease, consistent improvements have not been achieved. This may reflect a mismatch between the interventions and the nature of the settings in which they are attempted. The application of complex adaptive systems (CAS) framework to understand clinical systems and inform efforts to improve them may lead to more successful interventions. We performed a systematic review of interventions to improve outcomes of patients with congestive heart failure (CHF) to examine whether interventions consistent with CAS are more likely to be effective. We then examine differences between interventions that are most effective for improving outcomes for patients with CHF versus previously published data for type 2 diabetes to explore the potential impact of the nature of the disease on the types of interventions that are more likely to be effective. Methods: We conducted a systematic review of the literature between 1998 and 2008 of organizational interventions to improve care of patients with CHF. Two independent reviewers independently assessed studies that met inclusion criteria to determine whether each reported intervention reflected one or more CAS characteristics. The effectiveness of interventions was rated as either 0 (no effect), 0.5 (mixed effect), or 1.0 (effective) based on the type, number, and significance of reported outcomes. Fisher's exact test was used to examine the association between CAS characteristics and intervention effectiveness. Specific CAS characteristics associated with intervention effectiveness for CHF were contrasted with previously published data for type 2 diabetes. Results and discussion: Forty-four studies describing 46 interventions met eligibility criteria. All interventions utilized at least one CAS characteristic, and 85% were either 'mixed effect' or 'effective' in terms of outcomes. The number of CAS characteristics present in each intervention was associated with effectiveness (p < 0.001), supporting the idea that interventions consistent with CAS are more likely to be effective. The individual CAS characteristics associated with CHF intervention effectiveness were learning, self-organization, and co-evolution, a finding different from our previously published analysis of interventions for diabetes. We suggest this difference may be related to the degree of uncertainty involved in caring for patients with diabetes versus CHF. Conclusion: These results suggest that for interventions to be effective, they must be consistent with the CAS nature of clinical systems. The difference in specific CAS characteristics associated with intervention effectiveness for CHF and diabetes suggests that interventions must also take into account attributes of the disease.McCombs School of [email protected]

    Photosynthetic growth despite a broken Q-cycle

    Get PDF
    Central in respiration or photosynthesis, the cytochrome bc1 and b6f complexes are regarded as functionally similar quinol oxidoreductases. They both catalyse a redox loop, the Q-cycle, which couples electron and proton transfer. This loop involves a bifurcated electron transfer step considered as being mechanistically mandatory, making the Q-cycle indispensable for growth. Attempts to falsify this paradigm in the case of cytochrome bc1 have failed. The rapid proteolytic degradation of b6f complexes bearing mutations aimed at hindering the Q-cycle has precluded so far the experimental assessment of this model in the photosynthetic chain. Here we combine mutations in Chlamydomonas that inactivate the redox loop but preserve high accumulation levels of b6f complexes. The oxidoreductase activity of these crippled complexes is sufficient to sustain photosynthetic growth, which demonstrates that the Q-cycle is dispensable for oxygenic photosynthesis

    Cryo-EM structure of the spinach cytochrome b6 f complex at 3.6 Å resolution.

    Get PDF
    The cytochrome b6 f (cytb6 f ) complex has a central role in oxygenic photosynthesis, linking electron transfer between photosystems I and II and converting solar energy into a transmembrane proton gradient for ATP synthesis1-3. Electron transfer within cytb6 f occurs via the quinol (Q) cycle, which catalyses the oxidation of plastoquinol (PQH2) and the reduction of both plastocyanin (PC) and plastoquinone (PQ) at two separate sites via electron bifurcation2. In higher plants, cytb6 f also acts as a redox-sensing hub, pivotal to the regulation of light harvesting and cyclic electron transfer that protect against metabolic and environmental stresses3. Here we present a 3.6 Å resolution cryo-electron microscopy (cryo-EM) structure of the dimeric cytb6 f complex from spinach, which reveals the structural basis for operation of the Q cycle and its redox-sensing function. The complex contains up to three natively bound PQ molecules. The first, PQ1, is located in one cytb6 f monomer near the PQ oxidation site (Qp) adjacent to haem bp and chlorophyll a. Two conformations of the chlorophyll a phytyl tail were resolved, one that prevents access to the Qp site and another that permits it, supporting a gating function for the chlorophyll a involved in redox sensing. PQ2 straddles the intermonomer cavity, partially obstructing the PQ reduction site (Qn) on the PQ1 side and committing the electron transfer network to turnover at the occupied Qn site in the neighbouring monomer. A conformational switch involving the haem cn propionate promotes two-electron, two-proton reduction at the Qn site and avoids formation of the reactive intermediate semiquinone. The location of a tentatively assigned third PQ molecule is consistent with a transition between the Qp and Qn sites in opposite monomers during the Q cycle. The spinach cytb6 f structure therefore provides new insights into how the complex fulfils its catalytic and regulatory roles in photosynthesis

    A Map of Dielectric Heterogeneity in a Membrane Protein: the Hetero-Oligomeric Cytochrome b 6 f Complex

    Get PDF
    The cytochrome b6f complex, a member of the cytochrome bc family that mediates energy transduction in photosynthetic and respiratory membranes, is a hetero-oligomeric complex that utilizes two pairs of b-hemes in a symmetric dimer to accomplish trans-membrane electron transfer, quinone oxidation–reduction, and generation of a proton electrochemical potential. Analysis of electron storage in this pathway, utilizing simultaneous measurement of heme reduction, and of circular dichroism (CD) spectra, to assay heme–heme interactions, implies a heterogeneous distribution of the dielectric constants that mediate electrostatic interactions between the four hemes in the complex. Crystallographic information was used to determine the identity of the interacting hemes. The Soret band CD signal is dominated by excitonic interaction between the intramonomer b-hemes, bn and bp, on the electrochemically negative and positive sides of the complex. Kinetic data imply that the most probable pathway for transfer of the two electrons needed for quinone oxidation–reduction utilizes this intramonomer heme pair, contradicting the expectation based on heme redox potentials and thermodynamics, that the two higher potential hemes bn on different monomers would be preferentially reduced. Energetically preferred intramonomer electron storage of electrons on the intramonomer b-hemes is found to require heterogeneity of interheme dielectric constants. Relative to the medium separating the two higher potential hemes bn, a relatively large dielectric constant must exist between the intramonomer b-hemes, allowing a smaller electrostatic repulsion between the reduced hemes. Heterogeneity of dielectric constants is an additional structure–function parameter of membrane protein complexes

    Advancing the application of systems thinking in health: managing rural China health system development in complex and dynamic contexts

    Get PDF
    Background: This paper explores the evolution of schemes for rural finance in China as a case study of the long and complex process of health system development. It argues that the evolution of these schemes has been the outcome of the response of a large number of agents to a rapidly changing context and of efforts by the government to influence this adaptation process and achieve public health goals. Methods:The study draws on several sources of data including a review of official policy documents and academic papers and in-depth interviews with key policy actors at national level and at a sample of localities. Results: The study identifies three major transition points associated with changes in broad development strategy and demonstrates how the adaptation of large numbers of actors to these contextual changes had a major impact on the performance of the health system. Further, it documents how the Ministry of Health viewed its role as both an advocate for the interests of health facilities and health workers and as the agency responsible for ensuring that government health system objectives were met. It is argued that a major reason for the resilience of the health system and its ability to adapt to rapid economic and institutional change was the ability of the Ministry to provide overall strategy leadership. Additionally, it postulates that a number of interest groups have emerged, which now also seek to influence the pathway of health system development. Conclusions: This history illustrates the complex and political nature of the management of health system development and reform. The paper concludes that governments will need to increase their capacity to analyze the health sector as a complex system and to manage change processes.UKaid: DFI

    Key Physiological Parameters Dictate Triggering of Activity-Dependent Bulk Endocytosis in Hippocampal Synapses

    Get PDF
    To maintain neurotransmission in central neurons, several mechanisms are employed to retrieve synaptically exocytosed membrane. The two major modes of synaptic vesicle (SV) retrieval are clathrin-mediated endocytosis and activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mode during intense stimulation, however the precise physiological conditions that trigger this mode are not resolved. To determine these parameters we manipulated rat hippocampal neurons using a wide spectrum of stimuli by varying both the pattern and duration of stimulation. Using live-cell fluorescence imaging and electron microscopy approaches, we established that stimulation frequency, rather than the stimulation load, was critical in the triggering of ADBE. Thus two hundred action potentials, when delivered at high frequency, were sufficient to induce near maximal bulk formation. Furthermore we observed a strong correlation between SV pool size and ability to perform ADBE. We also identified that inhibitory nerve terminals were more likely to utilize ADBE and had a larger SV recycling pool. Thus ADBE in hippocampal synaptic terminals is tightly coupled to stimulation frequency and is more likely to occur in terminals with large SV pools. These results implicate ADBE as a key modulator of both hippocampal neurotransmission and plasticity

    Addressing Antimicrobial Resistance in China: Policy Implementation in a Complex Context

    Get PDF
    The effectiveness of antibiotics in treating bacterial infections is decreasing in China because of the widespread development of resistant organisms. Although China has enacted a number of regulations to address this problem, but the impact is very limited. This paper investigates the implementation of these regulations through the lens of complex adaptive systems (CAS). It presents the findings from reviews of relevant policy documents and published papers. The paper identifies different types of agent and explores their interaction with regard to the use of antibiotics and their responses to changes of the regulations. It focuses particularly on the impact of perverse financial incentives on overall patterns of use of antibiotics. Implications for the possibilities of nonlinear results, interactive relationships, and new pathways of policy implementation are discussed. The paper concludes that policy-makers need to better understand the objectives, incentives and potential adaptive behaviors of the agents when they implement interventions to improve antibiotic use and reduce the risk of emergence of resistant organism
    corecore