81 research outputs found
Syphon Diaphragms : A Method for Predicting Their Performance for Purposes of Instrument Design
Here, the purpose is to show that the characteristic performance of a syphon diaphragm can be predicted from a knowledge of its stiffness and of its dimensions. The proof is based on a mathematical analysis of this type of diaphragm, together with enough experimental data to prove the validity of the assumptions and the sufficiency of the analysis. Equations are developed for the performance of syphons under various conditions of loading, both for concentrated loads and for hydrostatic pressure
Investigation of damping liquids for aircraft instruments
This report covers the results of an investigation carried on at the Bureau of Standards under a research authorization from, and with the financial assistance of, the National Advisory Committee for Aeronautics. The choice of a damping liquid for aircraft instruments is difficult owing to the range of temperature at which aircraft operate. Temperature changes affect the viscosity tremendously. The investigation was undertaken with the object of finding liquids of various viscosities otherwise suitable which had a minimum change in viscosity with temperature. The new data relate largely to solutions. The effect of temperature on the kinematic viscosity of the following liquids and solutions was determined in the temperature interval -18 degrees to +30 degrees C. (1) solutions of animal and vegetable oils in xylene. These were poppy-seed oil, two samples of neat's-foot oils, castor oil, and linseed oil. (2) solutions of mineral oil in xylene. These were Squibb's petrolatum of naphthene base and transformer oil. (3) glycerine solutions in ethyl alcohol and in mixture of 50-50 ethyl alcohol and water. (4) mixtures of normal butyl alcohol with methyl alcohol. (5) individual liquids, kerosene, mineral spirits, xylene, recoil oil. The apparatus consisted of four capillary-tube viscometers, which were immersed in a liquid bath in order to secure temperature control. The method of calibration and the related experimental data are presented
Investigation of Damping Liquids for Aircraft Instruments : II
Data are presented on the kinematic viscosity, in the temperature range -50 degrees to +30 degrees C. of pure liquids and of solutions of animal oils, vegetable oils, mineral oils, glycerine, and ethylene glycol in various low freezing point solvents. It is shown that the thermal coefficient of kinematic viscosity as a function of the kinematic viscosity of the solutions of glycerine and ethylene glycol in alcohols is practically independent of the temperature and the chemical composition of the individual liquids. This is similarly true for the mineral oil group and, for a limited temperature interval, for the pure animal and vegetable oils. The efficiency of naphthol, hydroquinone, and diphenylamine to inhibit the change of viscosity of poppyseed and linseed oils was also investigated
Jump at the onset of saltation
We reveal a discontinuous transition in the saturated flux for aeolian
saltation by simulating explicitly particle motion in turbulent flow. The
discontinuity is followed by a coexistence interval with two metastable
solutions. The modification of the wind profile due to momentum exchange
exhibits a second maximum at high shear strength. The saturated flux depends on
the strength of the wind as
Nonlinearity of Apparent Mass for Multielement Bodies
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140689/1/1.j054214.pd
The apparent roughness of a sand surface blown by wind from an analytical model of saltation
We present an analytical model of aeolian sand transport. The model
quantifies the momentum transfer from the wind to the transported sand by
providing expressions for the thickness of the saltation layer and the apparent
surface roughness. These expressions are derived from basic physical principles
and a small number of assumptions. The model further predicts the sand
transport rate (mass flux) and the impact threshold (the smallest value of the
wind shear velocity at which saltation can be sustained). We show that, in
contrast to previous studies, the present model's predictions are in very good
agreement with a range of experiments, as well as with numerical simulations of
aeolian saltation. Because of its physical basis, we anticipate that our model
will find application in studies of aeolian sand transport on both Earth and
Mars
Asymptotic models for the generation of internal waves by a moving ship, and the dead-water phenomenon
This paper deals with the dead-water phenomenon, which occurs when a ship
sails in a stratified fluid, and experiences an important drag due to waves
below the surface. More generally, we study the generation of internal waves by
a disturbance moving at constant speed on top of two layers of fluids of
different densities. Starting from the full Euler equations, we present several
nonlinear asymptotic models, in the long wave regime. These models are
rigorously justified by consistency or convergence results. A careful
theoretical and numerical analysis is then provided, in order to predict the
behavior of the flow and in which situations the dead-water effect appears.Comment: To appear in Nonlinearit
Recommended from our members
NACA Technical Reports
"This report covers the results of an investigation carried on at the Bureau of Standards under a research authorization from, and with the financial assistance of, the National Advisory Committee for Aeronautics. The choice of a damping liquid for aircraft instruments is difficult owing to the range of temperature at which aircraft operate. Temperature changes affect the viscosity tremendously. The investigation was undertaken with the object of finding liquids of various viscosities otherwise suitable which had a minimum change in viscosity with temperature" (p. 405)
Recommended from our members
NACA Technical Notes
Here, the purpose is to show that the characteristic performance of a syphon diaphragm can be predicted from a knowledge of its stiffness and of its dimensions. The proof is based on a mathematical analysis of this type of diaphragm, together with enough experimental data to prove the validity of the assumptions and the sufficiency of the analysis. Equations are developed for the performance of syphons under various conditions of loading, both for concentrated loads and for hydrostatic pressure
- …