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TECHNICAL NOTE NO. ©0.

SYLPHON DIAPHRAGMS
A Method for Predicting their Performance
for Purposes of Instrument Design.

By H. N. Eaton and G. H. Keulegan,
Bureau of Standards.

Introduvction.

This technical note was prepared for the National Advisory
Committee for Aeronautics as a part of the report on the "Inves-

tigation of Diaphragms for Aeronautic Instruments," and the pur-
pose of this paper is to show that the characteristic performance

of a sylphon diaphragm can be predicted from a knowledge of its

stiffness and of its dimensions. The proof is based on a mathe-

matical analysis of this type of diaphragm, together with enough

éxperimental data to prove the validity of the assumptions and

the sufficiency of the analysis. Equations are developed for the

performance of sylphons under various conditions of loading

both
for concentrated loads and for hydrostatic pressure.
The results of the investigation will be useful in the design
of instruments or devices containing sylphons, since, by measur-

ing certain dimensions of the diaphragm and the deflection produc-
ed by a known concentrated load (to determine the ‘'stiffness),

decsigner will be able to predict the action of

the, sylphon un




-

the above-mentioned types of loading within the 1imits definecC

below.

The load-deflection curve of a- sylphon is linear over a CoOmr

siderable range, and over this range the eTroIS due to imperfect
elasticity (i.e. drift, hysteresis, and after-effoct)* have been

i ’ . e H aA‘
found to be less than one per cent of the maXimun geflection and

so can be neglected, as far as the object of this paper =8 e

limited, t“erefore, to

cerned. The disoussion which follows is

the range of loading for which the load-deflection curve of the

sylphon is a straight line and does not jnclude a consideration

of the effect of drift, hysteresis and after-effect.

Assumptions.

The following assumptions will be made:

g (a) The load-deflection curve of the sylphon for concentrated

loads is linear. (This curve will »e called the characteri istic

curve of the sylphon - see Fig. Be)

(b) The errors due to imperfect elasticity (drift, hystere-

sis and after-effect) can be neglected.

(¢) The external space between two successive corrugations it

suc ive cOT

equal in volume to the internal space between two success

rugations for deflections within the linear range. g

* These terms will be defined as follows:
Drift is the change of dlsplacement under constant loac
Hysteresis is the excess of displacement with loads decreasing,
: over the displacement at the same load, with loads increasing.
. After-effect is the residual displacement at any time after re-
moval of the load.




(d) Ths cross-sectional area of the sylphon remains constan

It has already been stated that assumptions (a) and (b) are
warranted from sxperimental evidence. The range over which thev
hold good will be discussed later for a particular sylplon.

Assumption (c) is justified by the excellent agreement be-
tween resulte obtained experimentally and thcse obtained analyii-
cally by making use of this assumption. Assumption (d) is suffi-

ciently accurate for the present purpose.

Notation
The following notation will be used:
= concentrated central load.

L
P = difference of pressure between inside and outside
of sylphon.

d;= internal diameter of sylphon)
. ) See Fig. 1.
da= external " " U )

y = deflection of upper face under load, measured from
neutral position of upper face (i.e. under no load).

A = maximum cross-section perpendicular to axis

(i.e.A = 42 )

Ay= equivalent area.

length of sylphon.

I

depth of one corrugation.

< &P
]

= volume of the sylphon.

v = average volume of sylphon per unit length = 1




W = work done on or by the sylphon.

n = number of corrugatvions.

Sg= spring stiffness = L

¥ L
Sg= stiffness of sylphon for concentrated loads = v
Sa= , e " distriduted loads = T

S = stiffness of combined sylphon and sp
3 i i |

ing when
avdrostatic pres ’

-
ied to the sylplLon.

g = width of gap between spring and sylphon belore
. being couplsd together.

Consider a sylphon diaphragm wish its axis vertical, its iow-
er surface fixed, and with its upper surface consisting of a rigid
plate (ses Fig. 1). Then concentrated loads are considered, it
will be assumed that they are applied vertically at the center
of the rigid plate. The discussion which follows applies only tc
the range of deflections for which the load-deflection curve is
linear.

From assumption (a) and the definition of stiffnsss theze
follows:

(1) L =8y

It will now be proved that a reslation
. (2) P = Sgy
similar to that expressed by eduation (1) exists for loads proiuc-

ed by hydrostatic pressure.




Consider the system consisting of a sylphon with an applied

concentrated load L. The interior of the sylphon is open to the
outside air. While the syliphon is yielding to the influence of
this load, the effective force, i.e., the force tending to deflect
the sylphon, is (L - S,y). Hence during the infinitesimal dis-
tance dy the work of deformation is (L - S,y) dy. The total

work of deformation or the increase in potential energy of the

system when the deflection has reached a value v, 1is

-y,
(3) W =f Wity arih 1% - 3 Soy® = % Sow?
J=o -
Now suppose a hydrostatic pressure P aprlied to the sylphon
tending to nullify the deflection produoedvby in . Then 2L .y 28
. the deflection of the sylphon measured from its original position
under no load, we can express P as a continuous and single-

i

valued function of 'y, - y as follows.. Denote g g

(4’) P = A}D -+ AaDz“i" .......... o %W e AnDn

where I RS R 6 TSR Ag are constants.

Suppose that P is taken sufficiently great exactly to nullii-
fy the deflection produced by L. During the cycle just complet-
ed, no unéonservative forces have been introduced, if we neglect
the hysteresis and internal friction in accordance with ass tion

N

(b) and ignore the small effect due %o viscosity of the air. Con-

sequently, when the deflection has been reducsd to zero by the ap-

plication of the pressure P, the work thus done can be equated

T T e e R S 0 L R R o SO




.-6o-

Sch° the potential energy which was added to the systen

2

Sy

to

when it deflected under the influence of the load L.

Therefore

D:Y]. P=P1
(8) W= f KPdD = / P4V = 5 Scv,?
i D=0 P=o

Substituting from (4) the value of P

ol

D=9, 2 ¢ gl 5
W= BP0 % 4.0% + ... A DP) dD = 5 Sgy,°
D=o
or i
KA Kb Vs KAr.s 3P 1
(6) W= *-égﬁ + N%Y1 Chpe -—SL%TAL"'= 3 Scy,?

This equation must hold for any value of A hence tihe coef-

ficients 6f y,° must vanish identically; i.e.

KA, =8
(8a) g Ao
and A' = A3 Al Sl A = )

Equation (4) now becomes

= A
(4a) {P 1D
' or P = A,

Since we are considering only the linear portion of the deflec

n -v)

tion curve of the sylphon, it makes no difference where the initial
position is taken: consequently (4a) may be written

(4b) P =4,y j
where . y 1is now measured from the position of the upper surface
of the sylphon before the pressure P was applied. If we replace

the constant A; by Sq. (4b) becomes identical with (2) and thus
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proves the validity of the latter. Experiment also verifies equa-

tion (2) (see Fig. 3).

FEquivalent Area.

Dividing equation (1) by equation (3) there results

\

S
L =p=C
PSd (y constant)

Now the ratio Sc/Sd has thé same dimensions as has area.

} ' It is also clear that this ratio for a given sylphon is dependent
only on the geometrical and physical characteristics of the syl-
phon. Consequently it may be considered as a certain proportion
of the maximum cross-sectional area A of the sylphon and will be
called the equivalent area of the sylphon. The physical signifi-
cance of the equivalent areg may be seen most clearly perhaps by
considering that a given hydrostatic pressure P procduces the
samé deflection of the sylphon as does a cgrtain concentrated cen-
tral load L, and that the eqQuivalent area is defined as the ratic
of this L to the given P. Its usefulness consists in the facts

that it is a constant for a given sylphon and that it enables one

to predict the performance of the sylphon under any specified con-

ditions, once the deflection for one concentrated load is known.
The value of the ratio gﬁ or Ay will now be derived in terms
of known constants and dimensions of the sylphon.

Returning to equation (5) we have
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P=R :
( 5) / & § Scyla
_ P=o

d(1lv) = vdl* = vdy

g
=
I

av =
~and ¢P = Sqy from (3) i
. Sgvydy = 3 ScY,
e
or A

1 .
3 Savw’ = 3 S

whence
S¢
Now v may be computed from the assumption that the sylphon

is made up of successive cylinders each of height h and adter-

nately of diameter d, and ds.

If there are 3n corrugations then

2 2
r finh (d e 2 2
V=%= e %)=g(d1+d2)

or :
(9) Ag =7 (d2° +ds)

Experimental verification of this result will be given later.

For purposes of comparison it will often be convenient to ex-

press the equivalent area as a percentage of the maximui ared.

Thus, o "
A d + A
(10) ‘j% = =

20z

AO
(10a) or 100 = = 100 —3gs per cent.

* See assumption (c).
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Performance of Sylphon Under any Combination of Loads.

From equations (1), (3), (7), and (8).
(11) L ¥ AP =55 (y, 2y,)
where y, 1s the deflection produced by L

]
and Y. 1s the deflection produced by P

Equation (11) contains two constants, Aq and Sp, which de-
pend only upon the characteristics of the sylphon. Aqg can be
computed from purely geometrical considerations, but S rust be
determined by experiment. From a single deflection with a concen-

trated load it is possible to obtain Sg, provided care is taken

that the range of loading for which the load-deflection curve is

linear is not exceeded. It is also possible to determine Ag

from a second experiment with distributed load, but it is usually

preferable to compute the value of this constant from equation (9).

Performance of Syliphon and Spring in Combination.

Suppose that a sylphon is distended by a spring either inter-
nal or external (sse Fig. 4). The performance of the spring may be
expressed by

(12) L = Sgy

Assume that, with the spring and syiphon mounted but not

coupled together, there exists a gap g betwesn the couplings.

o

If the two are now cocupled together, g is reduced to zero and the
top of the sylphon is deflected an amount 7. y, can be computed

from the known values of g, Sg, and Sg and, consequently, the re-
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computed, as will be shown.
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Now let a pressure P be applied externally (or suction in-
ternally). Eguating the force exerted by the spring to the elastic

resistance of the sylphon and the lodd, there resulis

L'l + SSY = Ll - SCY + qu

o

where y is measured from the neutral position of the couplings
when the sylphon and spring are coupled together.

Then (15) AgP = (S¢ + Ss) ¥

or
: 5
> (15a) P = (sg + K’) y
1 “q
3 The quantity in parentheses is the stiffness of the corbina-

tion of spring and sylphon and (15a) may dbe written

(15b) P = Sy




Experimental Varification of Formula for Equivalent Area.

Four sylphons were tested in order that experimental confir-

mation of the precedin analysis might be obtained. The construc-
Y. &

tion characteristics of these sylphons are given in the following

table:
- Table 1.
No.1 No. 2 No. 3 No. 4
Internal Diameter cm. 4. 1 e B 4,1 9.5
External Diameter cm. 6: 'O i, 9 . 13 11,6
Thickness of Materiail cn. L0l 0, 035 0. 025 0.035
Number of Corrugations 11 10 13 21

Material (Brass )

—_

Fig. 2 shows the characteristic curves for these sylphons.

The value of Sc can be obtained from these curves, since from

L
(l), S, = v

Fig. 3 shows performance curves for Sylphon No. 2 determined

experimentally, Extension and loads tending to produce extension
of the sylphon are considered positive. The curves are linear

over the range shown in Fig. 3. It was found that, when a load
producing a deflection of -0.35 cm. was applied, the curve was no
longer linear. The points in which the lines L = const. cut the
axls of deflections is obtained from the characteristic curve of
the sylphon., The points in which these lines cut the axis of

pressure may be computed from equation (11) by putting

% =~ %= O;.. when k
L

—

Ag

g
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or, if preferred, the lines may be drawn through the proper
points on the axis of deflections with the required slope. This
siope is easily proven to be +Syq from equation (11). The slope
appears to be negative im Fig., 3, but it should be remembered
that the pressures shown here are negative.

Fig. 3 shows that Sylphon No. 2 will give linear load-deflec-
tion curves from a deflection of about -0.2 cm. to at least
+0.4 cm. The positive limit of linear deflections may be much
higher than +0.4 cm., but the tests were not carried to the limi<,

From a consideration of the way in which tas family of
curves in Fig, 3 was constructed, it is clear that each intersec-
tion of a line L = const. with the axis of pressures can be used
to determine the value of Ag. Considering such a point we have

the relation
I

P.

L

~

Aq:

[y

This will be utilized to provide a check on the values of

Ag as determined analytically.
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Table 2.

. e

Equivalent Areas of Sylphon.

Sylphon No. 1.

P L A Ay Agq A q
gms/cm?® gms. cm® cm*® A A
Experimental Computed Exper'l
4,33 1.0 28. 3 1 N §
3. 14 45.0 21.0
1.07 23.0 3Xe 5
0. 42 9.0 21. 4
R . Bl 21. 35 73. 4 i~

¢
‘The difference between experimental and computed values is 2. 4%.

Sylphon No. 2

EHE S 1361.0 lled 86. 4
10. 40 008.0 8. o
5.00 453.0 90.6
2,65 2837.0 B5.7
A I 136.0 8788
1:00 21. 0 21.0
0.45 45.0 100.0
L VR S 89.83 el.7 €0.7
The difference is 1. 3%.
' Sylphon No. 3.
64.5 1361.0 29. 55 = P |
44,0 208.0 20.6
31«5 453.0 31, 1
10.7 237.0 21. 3
RO L T e e BN 72.4 71.8
The difference is 1.7%.
Sylphon No. 4.
26.0 2270..0 105. 7 87«
20. 8 1814.0 87.2
1543 136150 89.0
10.2 907.0 88.8
5.0 453.0 90.6
I L L ) e e e e OO0 83.4 83.8
The difference is O.5%
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The agreement between the experimental and @alculated values
of Aq indicates that the eguivalent area for any sylphon 1is
independent of the elastic properties of the sylphon and may be

computed from the expression

Aq = 'g (dla + dza) (9)
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Fig. 8. Characteristic curves for sylphons. Nos. 1 to 4.




