107 research outputs found

    Hysteresis and competition between disorder and crystallization in sheared and vibrated granular flow

    Full text link
    Experiments on spherical particles in a 3D Couette cell vibrated from below and sheared from above show a hysteretic freezing/melting transition. Under sufficient vibration a crystallized state is observed, which can be melted by sufficient shear. The critical line for this transition coincides with equal kinetic energies for vibration and shear. The force distribution is double-peaked in the crystalline state and single-peaked with an approximately exponential tail in the disordered state. A linear relation between pressure and volume (dP/dV>0dP/dV > 0) exists for a continuum of partially and/or intermittently melted states over a range of parameters

    Friction of a slider on a granular layer: Non-monotonic thickness dependence and effect of boundary conditions

    Full text link
    We investigate the effective friction encountered by a mass sliding on a granular layer as a function of bed thickness and boundary roughness conditions. The observed friction has minima for a small number of layers before it increases and saturates to a value which depends on the roughness of the sliding surface. We use an index-matched interstitial liquid to probe the internal motion of the grains with fluorescence imaging in a regime where the liquid has no significant effect on the measured friction. The shear profiles obtained as a function of depth show decrease in slip near the sliding surface as the layer thickness is increased. We propose that the friction depends on the degree of grain confinement relative to the sliding surfaces.Comment: 4 pages, 6 figure

    Slow flows of yield stress fluids: complex spatio-temporal behaviour within a simple elasto-plastic model

    Full text link
    A minimal athermal model for the flow of dense disordered materials is proposed, based on two generic ingredients: local plastic events occuring above a microscopic yield stress, and the non-local elastic release of the stress these events induce in the material. A complex spatio-temporal rheological behaviour results, with features in line with recent experimental observations. At low shear rates, macroscopic flow actually originates from collective correlated bursts of plastic events, taking place in dynamically generated fragile zones. The related correlation length diverges algebraically at small shear rates. In confined geometries bursts occur preferentially close to the walls yielding an intermittent form of flow localization.Comment: 4 pages, 4 figure

    Avalanche statistics and time-resolved grain dynamics for a driven heap

    Get PDF
    We probe the dynamics of intermittent avalanches caused by steady addition of grains to a quasi-two dimensional heap. To characterize the time-dependent average avalanche flow speed v(t), we image the top free surface. To characterize the grain fluctuation speed dv(t), we use Speckle-Visibility Spectroscopy. During an avalanche, we find that the fluctuation speed is approximately one-tenth the average flow speed, and that these speeds are largest near the beginning of an event. We also find that the distribution of event durations is peaked, and that event sizes are correlated with the time interval since the end of the previous event. At high rates of grain addition, where successive avalanches merge into smooth continuous flow, the relationship between average and fluctuation speeds changes to dv Sqrt[v]

    Subdiffusion and cage effect in a sheared granular material

    Full text link
    We investigate experimentally the diffusion properties of a bidimensional bidisperse dry granular material under quasistatic cyclic shear.The comparison of these properties with results obtained both in computer simulations of hard spheres systems and Lenard-Jones liquids and experiments on colloidal systems near the glass transition demonstrates a strong analogy between the behaviour of granular matter and these systems. More specifically, we study in detail the cage dynamics responsible for the subdiffusion in the slow relaxation regime, and obtain the values of relevant time and length scales.Comment: 4 pages, 6 figures, submitted to PR

    Flow rule, self-channelization and levees in unconfined granular flows

    Full text link
    Unconfined granular flows along an inclined plane are investigated experimentally. During a long transient, the flow gets confined by quasistatic banks but still spreads laterally towards a well-defined asymptotic state following a nontrivial process. Far enough from the banks a scaling for the depth averaged velocity is obtained, which extends the one obtained for homogeneous steady flows. Close to jamming it exhibits a crossover towards a nonlocal rheology. We show that the levees, commonly observed along the sides of the deposit upon interruption of the flow, disappear for long flow durations. We demonstrate that the morphology of the deposit builds up during the flow, in the form of an underlying static layer, which can be deduced from surface velocity profiles, by imposing the same flow rule everywhere in the flow.Comment: 4 pages, 5 figure

    Transverse Instability of Avalanches in Granular Flows down Incline

    Full text link
    Avalanche experiments on an erodible substrate are treated in the framework of ``partial fluidization'' model of dense granular flows. The model identifies a family of propagating soliton-like avalanches with shape and velocity controlled by the inclination angle and the depth of substrate. At high inclination angles the solitons display a transverse instability, followed by coarsening and fingering similar to recent experimental observation. A primary cause for the transverse instability is directly related to the dependence of soliton velocity on the granular mass trapped in the avalanche.Comment: 3 figures, 4 pages, submitted to Phys Rev Let

    Model for erosion-deposition patterns

    Full text link
    We investigate through computational simulations with a pore network model the formation of patterns caused by erosion-deposition mechanisms. In this model, the geometry of the pore space changes dynamically as a consequence of the coupling between the fluid flow and the movement of particles due to local drag forces. Our results for this irreversible process show that the model is capable to reproduce typical natural patterns caused by well known erosion processes. Moreover, we observe that, within a certain range of porosity values, the grains form clusters that are tilted with respect to the horizontal with a characteristic angle. We compare our results to recent experiments for granular material in flowing water and show that they present a satisfactory agreement.Comment: 8 pages, 12 figures, submitted to Phys. Rev.

    Velocity Correlations in Dense Gravity Driven Granular Chute Flow

    Full text link
    We report numerical results for velocity correlations in dense, gravity-driven granular flow down an inclined plane. For the grains on the surface layer, our results are consistent with experimental measurements reported by Pouliquen. We show that the correlation structure within planes parallel to the surface persists in the bulk. The two-point velocity correlation function exhibits exponential decay for small to intermediate values of the separation between spheres. The correlation lengths identified by exponential fits to the data show nontrivial dependence on the averaging time \dt used to determine grain velocities. We discuss the correlation length dependence on averaging time, incline angle, pile height, depth of the layer, system size and grain stiffness, and relate the results to other length scales associated with the rheology of the system. We find that correlation lengths are typically quite small, of the order of a particle diameter, and increase approximately logarithmically with a minimum pile height for which flow is possible, \hstop, contrary to the theoretical expectation of a proportional relationship between the two length scales.Comment: 21 pages, 16 figure

    Erosion waves: transverse instabilities and fingering

    Full text link
    Two laboratory scale experiments of dry and under-water avalanches of non-cohesive granular materials are investigated. We trigger solitary waves and study the conditions under which the front is transversally stable. We show the existence of a linear instability followed by a coarsening dynamics and finally the onset of a fingering pattern. Due to the different operating conditions, both experiments strongly differ by the spatial and time scales involved. Nevertheless, the quantitative agreement between the stability diagram, the wavelengths selected and the avalanche morphology reveals a common scenario for an erosion/deposition process.Comment: 4 pages, 6 figures, submitted to PR
    • …
    corecore