8 research outputs found

    Precipitation is the main axis of tropical phylogenetic turnover across space and time

    Get PDF
    Early natural historians – Compte de Buffon, von Humboldt and De Candolle – established ecology and geography as two principal axes determining the distribution of groups of organisms, laying the foundations for biogeography over the subsequent 200 years, yet the relative importance of these two axes remains unresolved. Leveraging phylogenomic and global species distribution data for Mimosoid legumes, an pantropical plant clade of 3,400 species, we show that the water availability gradient from deserts to rainforests dictates turnover of lineages within continents across the tropics. We demonstrate that 95% of speciation occurs within a precipitation niche, showing profound phylogenetic niche conservatism, and that lineage turnover boundaries coincide with isohyets of precipitation. We reveal similar patterns on different continents, implying that evolution and dispersal follow universal processes.Fil: Ringelberg, Jens J. University of Zurich. Department of Systematic and Evolutionary Botany; SuizaFil: Koenen, Erik J.M. University of Zurich. Department of Systematic and Evolutionary Botany; Suiza. Université Libre de Bruxelles. Faculté des Sciences. Evolutionary Biology & Ecology; BélgicaFil: Sauter, Benjamín. University of Zurich. Department of Systematic and Evolutionary Botany; SuizaFil: Aebli, Anahita. University of Zurich. Department of Systematic and Evolutionary Botany; Suiza. Abteling Umweltschutz und Energie. Departement Bau und Umwelt; SuizaFil: Rando, Juliana G. Universidade Federal do Oeste da Bahia. Centro das Ciências Biológicas e da Saúde. Programa de Pós Graduação em Ciências Ambientais; BrasilFil: Iganci, João R. Universidade Federal de Pelotas. Campus Universitário Capão do Leão. Instituto de Biologia; Brasil. Universidade Federal do Rio Grande do Sul. Programa de Pós-Graduação em Botânica; BrasilFil: de Queiroz, Luciano P. Universidade Estadual de Feira de Santana. Departamento Ciências Biológicas; BrasilFil: Murphy, Daniel J. Royal Botanic Gardens Victoria: AustraliaFil: Gaudeul, Myriam. Institut de Systématique, Evolution, Biodiversité (ISYEB), MNHN-CNRS-SU-EPHE-UA: FranciaFil: Bruneau, Anne. Université de Montréal. Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques; CanadáFil: Luckow, Melissa. Cornell University. School of Integrative Plant Science. Plant Biology Section; Estados UnidosFil: Morales, Matias. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Morón. Facultad de Agronomía y Ciencias Agroalimentarias; Argentin

    Precipitation is the main axis of tropical plant phylogenetic turnover across space and time

    Full text link
    Early natural historians-Comte de Buffon, von Humboldt, and De Candolle-established environment and geography as two principal axes determining the distribution of groups of organisms, laying the foundations for biogeography over the subsequent 200 years, yet the relative importance of these two axes remains unresolved. Leveraging phylogenomic and global species distribution data for Mimosoid legumes, a pantropical plant clade of c. 3500 species, we show that the water availability gradient from deserts to rain forests dictates turnover of lineages within continents across the tropics. We demonstrate that 95% of speciation occurs within a precipitation niche, showing profound phylogenetic niche conservatism, and that lineage turnover boundaries coincide with isohyets of precipitation. We reveal similar patterns on different continents, implying that evolution and dispersal follow universal processes

    Growing knowledge: an overview of Seed Plant diversity in Brazil

    No full text

    Growing knowledge: an overview of Seed Plant diversity in Brazil

    No full text
    Abstract An updated inventory of Brazilian seed plants is presented and offers important insights into the country's biodiversity. This work started in 2010, with the publication of the Plants and Fungi Catalogue, and has been updated since by more than 430 specialists working online. Brazil is home to 32,086 native Angiosperms and 23 native Gymnosperms, showing an increase of 3% in its species richness in relation to 2010. The Amazon Rainforest is the richest Brazilian biome for Gymnosperms, while the Atlantic Rainforest is the richest one for Angiosperms. There was a considerable increment in the number of species and endemism rates for biomes, except for the Amazon that showed a decrease of 2.5% of recorded endemics. However, well over half of Brazillian seed plant species (57.4%) is endemic to this territory. The proportion of life-forms varies among different biomes: trees are more expressive in the Amazon and Atlantic Rainforest biomes while herbs predominate in the Pampa, and lianas are more expressive in the Amazon, Atlantic Rainforest, and Pantanal. This compilation serves not only to quantify Brazilian biodiversity, but also to highlight areas where there information is lacking and to provide a framework for the challenge faced in conserving Brazil's unique and diverse flora

    Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

    No full text
    corecore