309 research outputs found

    A comparative analysis on serious adverse events reported for COVID-19 vaccines in adolescents and young adults

    Get PDF
    This study aims to assess the safety profile of COVID-19 vaccines (mRNA and viral vector vaccines) in teenagers and young adults, as compared to Influenza and HPV vaccines, and to early data from Monkeypox vaccination in United States. Methods: We downloaded data from the Vaccine Adverse Event Reporting System (VAERS) and collected the following Serious Adverse Events (SAEs) reported for COVID-19, Influenza, HPV and Monkeypox vaccines: deaths, life-threatening illnesses, disabilities, hospitalizations. We restricted our analysis to the age groups 12–17 and 18–49, and to the periods December 2020 to July 2022 for COVID-19 vaccines, 2010–2019 for Influenza vaccines, 2006–2019 for HPV vaccines, June 1, 2022 to November 15, 2022 for Monkeypox vaccine. Rates were calculated in each age and sex group, based on an estimation of the number of administered doses. Results: Among adolescents the total number of reported SAEs per million doses for, respectively, COVID-19, Influenza and HPV vaccines were 60.73, 2.96, 14.62. Among young adults the reported SAEs rates for, respectively, COVID-19, Influenza, Monkeypox vaccines were 101.91, 5.35, 11.14. Overall, the rates of reported SAEs were significantly higher for COVID-19, resulting in a rate 19.60-fold higher than Influenza vaccines (95% C.I. 18.80–20.44), 4.15-fold higher than HPV vaccines (95% C.I. 3.91–4.41) and 7.89-fold higher than Monkeypox vaccine (95% C.I. 3.95–15.78). Similar trends were observed in teenagers and young adults with higher Relative Risks for male adolescents. Conclusion: The study identified a risk of SAEs following COVID-19 vaccination which was markedly higher compared to Influenza vaccination and substantially higher compared to HPV vaccination, both for teenagers and young adults, with an increased risk for the male adolescents group. Initial, early data for Monkeypox vaccination point to significantly lower rates of reported SAEs compared to those for COVID-19 vaccines. In conclusion these results stress the need of further studies to explore the bases for the above differences and the importance of accurate harm-benefit analyses, especially for adolescent males, to inform the COVID-19 vaccination campaign

    Bombyx mori Silk Fibroin Regeneration in Solution of Lanthanide Ions: A Systematic Investigation

    Get PDF
    Silk Fibroin (SF) obtained from Bombyx mori is a very attractive biopolymer that can be useful for many technological applications, from optoelectronics and photonics to biomedicine. It can be processed from aqueous solutions to obtain many scaffolds. SF dissolution is possible only with the mediation of chaotropic salts that disrupt the secondary structure of the protein. As a consequence, recovered materials have disordered structures. In a previous paper, it was shown that, by modifying the standard Ajisawa’s method by using a lanthanide salt, CeCl3, as the chaotropic agent, it is possible to regenerate SF as a fibrous material with a very ordered structure, similar to that of the pristine fiber, and doped with Ce+3 ions. Since SF exhibits a moderate fluorescence which can be enhanced by the incorporation of organic molecules, ions and nanoparticles, the possibility of doping it with lanthanide ions could be an appealing approach for the development of new photonic systems. Here, a systematic investigation of the behavior of degummed SF in the presence of all lanthanide ions, Ln+3, is reported. It has been found that all lanthanide chlorides are chaotropic salts for solubilizing SF. Ln+3 ions at the beginning and the end of the series (La+3, Pr+3, Er+3, Tm+3, Yb+3, Lu+3) favor the reprecipitation of fibrous SF as already found for Ce+3. In most cases, the obtained fiber preserves the morphological and structural features of the pristine SF. With the exception of SF treated with La+3, Tm+3, and Lu+3, for all the fibers re-precipitated a concentration of Ln+3 between 0.2 and 0.4% at was measured, comparable to that measured for Ce+3-doped SF

    Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation

    Get PDF
    The development of inflammatory diseases implies inactivation of regulatory T (Treg) cells through mechanisms that still are largely unknown. Here we showed that mast cells (MCs), an early source of inflammatory mediators, are able to counteract Treg inhibition over effector T cells. To gain insight into the molecules involved in their interplay, we set up an in vitro system in which all 3 cellular components were put in contact. Reversal of Treg suppression required T cell-derived interleukin-6 (IL-6) and the OX40/OX40L axis. In the presence of activated MCs, concomitant abundance of IL-6 and paucity of Th1/Th2 cytokines skewed Tregs and effector T cells into IL-17-producing T cells (Th17). In vivo analysis of lymph nodes hosting T-cell priming in experimental autoimmune encephalomyelitis revealed activated MCs, Tregs, and Th17 cells displaying tight spatial interactions, further supporting the occurrence of an MC-mediated inhibition of Treg suppression in the establishment of Th17-mediated inflammatory responses. © 2009 by The American Society of Hematology

    A multidisciplinary expert opinion on CINV and RINV, unmet needs and practical real-life approaches

    Get PDF
    Introduction: A range of combination chemotherapy regimens are currently used in clinical practice. However, international antiemetic guidelines often only categorize the emetogenic potential of single agents rather than the emetogenicity of combination chemotherapy regimens. To manage the nausea and vomiting induced by antineoplastic combinations, guidelines suggest antiemetics that are appropriate for the component drug with the highest emetogenic potential. Furthermore, antiemetic guidelines generally do not consider the influence of other factors, including individual patient characteristics, on the emetic effects of cancer treatments. Similarly, the emetogenic potential of radiotherapy is stratified only according to the site of radiation, while other factors contributing to emetic risk are overlooked. Areas covered: An Expert Panel was convened to examine unresolved issues and summarize the current clinical research on managing nausea and vomiting associated with combination chemotherapy and radiotherapy. Expert opinion: The panel identified the incidence of nausea and vomiting induced by multi-drug combination therapies currently used to treat cancer at different anatomic sites and by radiotherapy in the presence of other risk factors. Based on these data and the clinical experience of panel members, several suggestions are made for a practical approach to prevent or manage nausea and vomiting due to chemotherapy regimens and radiation therapy

    Telemedicine for Delivery of Care in Frontotemporal Lobar Degeneration during COVID-19 Pandemic: Results from Southern Italy

    Get PDF
    Background: The COVID-19 pandemic is changing clinical practice in neurology, after the governments decided the introduction of social distancing and interruption of medical non-emergency services in many countries. Teleneurology is an effective tool for the remote evaluation of patients but its adoption for frontotemporal lobar dementia (FTD) is in a preliminary stage. Objective: We evaluated multidisciplinary assessment of patients with FTD using telehealth during the COVID-19 pandemic. Methods: All patients received a diagnosis of FTD during 2018-2019 according to international criteria. A structured questionnaire and Clinical Dementia Rating Scale (CDR)-FTD were used by the neurologist with patients and/or caregivers. Index symptoms of COVID-19 infection were searched. Results: Twenty-eight clinical interviews were completed with caregivers and four with both patients/caregivers. Most patients and caregivers were satisfied with the neurological interview and expressed their willingness to continue to be included in remote evaluation programs (90%). Fifty percent of patients experienced significant worsening of clinical picture and quality of life since the start of social distancing. The CDR-FTD scale revealed a significant worsening of behavior (p = 0.01) and language functions (p = 0.009), compared to the last in-person evaluation at the center. One patient presented index symptoms of COVID-19 infection and was confirmed to be positive for COVID-19 with pharyngeal swab. Conclusion: The study was conducted in Italy, one of the countries hit particularly hard by the COVID-19 pandemic, with interruption of all non-emergency medical services. Our study indicates that telemedicine is a valid tool to triage patients with FTD to increase practice outreach and efficiency

    Elevated expression of artemis in human fibroblast cells is associated with cellular radiosensitivity and increased apoptosis

    Get PDF
    Copyright @ 2012 Nature Publishing GroupThis article has been made available through the Brunel Open Access Publishing Fund.Background: The objective of this study was to determine the molecular mechanism(s) responsible for cellular radiosensitivity in two human fibroblast cell lines 84BR and 175BR derived from two cancer patients. Methods: Clonogenic assays were performed following exposure to increasing doses of gamma radiation to confirm radiosensitivity. Îł-H2AX foci assays were used to determine the efficiency of DNA double strand break (DSB) repair in cells. Quantitative-PCR (Q-PCR) established the expression levels of key DNA DSB repair proteins. Imaging flow cytometry using Annexin V-FITC was used to compare artemis expression and apoptosis in cells. Results: Clonogenic cellular hypersensitivity in the 84BR and 175BR cell lines was associated with a defect in DNA DSB repair measured by the Îł-H2AX foci assay. Q-PCR analysis and imaging flow cytometry revealed a two-fold overexpression of the artemis DNA repair gene which was associated with an increased level of apoptosis in the cells before and after radiation exposure. Over-expression of normal artemis protein in a normal immortalised fibroblast cell line NB1-Tert resulted in increased radiosensitivity and apoptosis. Conclusion: We conclude elevated expression of artemis is associated with higher levels of DNA DSB, radiosensitivity and elevated apoptosis in two radio-hypersensitive cell lines. These data reveal a potentially novel mechanism responsible for radiosensitivity and show that increased artemis expression in cells can result in either radiation resistance or enhanced sensitivity.This work was supported in part by The Vidal Sassoon Foundation USA. This article is made available through the Brunel Open Access Publishing Fund

    Donor cell acute myeloid leukemia after hematopoietic stem cell transplantation for chronic granulomatous disease: a case report and literature review

    Get PDF
    The patient reported here underwent hematopoietic stem cell transplantation (HSCT) due to chronic granulomatous disease (CGD) caused by biallelic mutations of the NCF1 gene. Two years later, he developed AML, which was unexpected and was recognized via sex-mismatched chromosomes as deriving from the donor cells; the patient was male, and the donor was his sister. Donor cell leukemia (DCL) is very rare, and it had never been reported in patients with CGD after HSCT. In the subsequent ten years, the AML relapsed three times and the patient underwent chemotherapy and three further HSCTs; donors were the same sister from the first HSCT, an unrelated donor, and his mother. The patient died during the third relapse. The DCL was characterized since onset by an acquired translocation between chromosomes 9 and 11, with a molecular rearrangement between the MLL and MLLT3 genes-a quite frequent cause of AML. In all of the relapses, the malignant clone had XX sex chromosomes and this rearrangement, thus indicating that it was always the original clone derived from the transplanted sister's cells. It exhibited the ability to remain quiescent in the BM during repeated chemotherapy courses, remission periods and HSCT. The leukemic clone then acquired different additional anomalies during the ten years of follow-up, with cytogenetic results characterized both by anomalies frequent in AML and by different, non-recurrent changes. This type of cytogenetic course is uncommon in AML

    Primary squamous cell carcinoma of major salivary gland: “Sapienza Head and Neck Unit” clinical recommendations

    Get PDF
    Primary squamous cell carcinoma of salivary gland (SCG) is an extremely rare type of malignant salivary gland tumor, which in turn results in scarcity of data available regarding both its treatment and associated genetic alterations. A retrospective analysis of 12 patients with primary SCG was conducted, along with analysis of the association between treatment, clinical/pathological characteristics, and outcomes. Most patients (8) were staged IVa, with the majority of them (10) having G3 fast growing cancer. Local and systemic recurrence were reported in only three out of nine parotid cases (0 out of 2 submandibular SCGs). In two out of eight patients local relapse occurred after integrated treatment, while recurrence occurred in two out of three patients undergoing exclusive surgery. Five patients eventually died. Treatment of resectable disease must be aggressive and multimodal, with achievement of loco-regional control in order to reduce rate of recurrence and improve outcomes. Metastatic disease would require a therapeutic strategy tailored to the molecular profile in order to improve the currently disappointing results

    Molecular-biology-driven treatment for metastatic colorectal cancer

    Get PDF
    Background: Metastatic CRC (mCRC) is a molecular heterogeneous disease. The aim of this review is to give an overview of molecular-driven treatment of mCRC patients. Methods: A review of clinical trials, retrospective studies and case reports was performed regarding molecular biomarkers with therapeutic implications. Results: RAS wild-type status was confirmed as being crucial for anti-epidermal growth factor receptor (EGFR) monoclonal antibodies and for rechallenge strategy. Antiangiogenic therapies improve survival in first- and second-line settings, irrespective of RAS status, while tyrosine kinase inhibitors (TKIs) remain promising in refractory mCRC. Promising results emerged from anti-HER2 drugs trials in HER2-positive mCRC. Target inhibitors were successful for BRAFV600E mutant mCRC patients, while immunotherapy was successful for microsatellite instability-high/defective mismatch repair (MSI-H/dMMR) or DNA polymerase epsilon catalytic subunit (POLE-1) mutant patients. Data are still lacking on NTRK, RET, MGMT, and TGF-β, which require further research. Conclusion: Several molecular biomarkers have been identified for the tailored treatment of mCRC patients and multiple efforts are currently ongoing to increase the therapeutic options. In the era of precision medicine, molecular-biology-driven treatment is the key to impro patient selection and patient outcomes. Further research and large phase III trials are required to ameliorate the therapeutic management of these patients
    • …
    corecore