420 research outputs found

    NK2 homeobox gene cluster: Functions and roles in human diseases

    Get PDF
    NK2 genes (NKX2 gene cluster in humans) encode for homeodomain-containing transcription factors that are conserved along the phylogeny. According to the most detailed classifications, vertebrate NKX2 genes are classified into two distinct families, NK2.1 and NK2.2. The former is constituted by NKX2-1 and NKX2-4 genes, which are homologous to the Drosophila scro gene; the latter includes NKX2-2 and NKX2-8 genes, which are homologous to the Drosophila vnd gene. Conservation of these genes is not only related to molecular structure and expression, but also to biological functions. In Drosophila and vertebrates, NK2 genes share roles in the development of ventral regions of the central nervous system. In vertebrates, NKX2 genes have a relevant role in the development of several other organs such as the thyroid, lung, and pancreas. Loss-of-function mutations in NKX2-1 and NKX2-2 are the monogenic cause of the brain-lung-thyroid syndrome and neonatal diabetes, respectively. Alterations in NKX2-4 and NKX2-8 genes may play a role in multifactorial diseases, autism spectrum disorder, and neural tube defects, respectively. NKX2-1, NKX2-2, and NKX2-8 are expressed in various cancer types as either oncogenes or tumor suppressor genes. Several data indicate that evaluation of their expression in tumors has diagnostic and/or prognostic value

    Dihydrotanshinone I exhibits antitumor effects via β-catenin downregulation in papillary thyroid cancer cell lines

    Get PDF
    Thyroid cancer is the most common endocrine carcinoma and, among its different subtypes, the papillary subtype (PTC) is the most frequent. Generally, PTCs are well differentiated, but a minor percentage of PTCs are characterized by a worse prognosis and more aggressive behavior. Phytochemicals, naturally found in plant products, represent a heterogeneous group of bioactive compounds that can interfere with cell proliferation and the regulation of the cell cycle, taking part in multiple signaling pathways that are often disrupted in tumor initiation, proliferation, and progression. In this work, we focused on 15,16-dihydrotanshinone I (DHT), a tanshinone isolated from Salvia miltiorrhiza Bunge (Danshen). We first evaluated DHT biological effect on PTC cells regarding cell viability, colony formation ability, and migration capacity. All of these parameters were downregulated by DHT treatment. We then investigated gene expression changes after DHT treatment by performing RNA-seq. The analysis revealed that DHT significantly reduced the Wnt signaling pathway, which plays a role in various diseases, including cancer. Finally, we demonstrate that DHT treatment decreases protein levels of β-catenin, a final effector of canonical Wnt signaling pathway. Overall, our data suggest a possible use of this nutraceutical as an adjuvant in the treatment of aggressive papillary thyroid carcinoma

    GSK2801 Reverses Paclitaxel Resistance in Anaplastic Thyroid Cancer Cell Lines through MYCN Downregulation

    Get PDF
    Anaplastic thyroid cancer (ATC) is a very rare, but extremely aggressive form of thyroid malignancy, responsible for the highest mortality rate registered for thyroid cancer. Treatment with taxanes (such as paclitaxel) is an important approach in counteracting ATC or slowing its progression in tumors without known genetic aberrations or those which are unresponsive to other treatments. Unfortunately, resistance often develops and, for this reason, new therapies that overcome taxane resistance are needed. In this study, effects of inhibition of several bromodomain proteins in paclitaxel-resistant ATC cell lines were investigated. GSK2801, a specific inhibitor of BAZ2A, BAZ2B and BRD9, was effective in resensitizing cells to paclitaxel. In fact, when used in combination with paclitaxel, it was able to reduce cell viability, block the ability to form colonies in an anchor-independent manner, and strongly decrease cell motility. After RNA-seq following treatment with GSK2801, we focused our attention on MYCN. Based on the hypothesis that MYCN was a major downstream player in the biological effects of GSK2801, we tested a specific inhibitor, VPC-70619, which showed effective biological effects when used in association with paclitaxel. This suggests that the functional deficiency of MYCN determines a partial resensitization of the cells examined and, ultimately, that a substantial part of the effect of GSK2801 results from inhibition of MYCN expression

    Rare spontaneous monochorionic dizygotic twins: a case report and a systematic review

    Get PDF
    Background: Monochorionic dizygotic twins are a rare condition, mostly related to assisted reproductive technology. This type of twinning is burdened by the same risk of pregnancy complications found in monochorionic monozygotic pregnancies. Case presentation: We report a case of spontaneous monochorionic dizygotic twins sharing situs inversus abdominalis and isolated levocardia, with only one twin affected by biliary atresia with splenic malformation syndrome. We also conducted a literature review of the 14 available documented monochorionic dizygotic twin gestations spontaneously conceived. Conclusions: It is still unclear how this unusual type of twinning can occur in spontaneous conception. The evidence so far suggest the importance to timely diagnose the chorionicity, in order to adequately manage the typical complications associated with monochorionicity

    Effects of dihydrotanshinone I on proliferation and invasiveness of paclitaxel-resistant anaplastic thyroid cancer cells

    Get PDF
    ATC is a very rare, but extremely aggressive form of thyroid malignancy, responsible for the highest mortality rate registered for thyroid cancer. In patients without known genetic aberrations, the current treatment is still represented by palliative surgery and systemic mono-or combined chemotherapy, which is often not fully effective for the appearance of drug resistance. Comprehension of the mechanisms involved in the development of the resistance is therefore an urgent issue to suggest novel therapeutic approaches for this very aggressive malignancy. In this study, we created a model of anaplastic thyroid cancer (ATC) cells resistant to paclitaxel and investigated the characteristics of these cells by analyzing the profile of gene expression and comparing it with that of paclitaxel-sensitive original ATC cell lines. In addition, we evaluated the effects of Dihydrotanshinone I (DHT) on the viability and invasiveness of paclitaxel-resistant cells. ATC paclitaxel-resistant cells highlighted an overexpression of ABCB1 and a hyper-activation of the NF-\u3baB compared to sensitive cells. DHT treatment resulted in a reduction of viability and clonogenic ability of resistant cells. Moreover, DHT induces a decrement of NF-\u3baB activity in SW1736-PTX and 8505C-PTX cells. In conclusion, to the best of our knowledge, the results of the present study are the first to demonstrate the antitumor effects of DHT on ATC cells resistant to Paclitaxel in vitro

    Role of m6A RNA Methylation in Thyroid Cancer Cell Lines

    Get PDF
    N6-methyladenosine (m6A) is the most abundant internal modification of RNA in eukaryotic cells, and, in recent years, it has gained increasing attention. A good amount of data support the involvement of m6A modification in tumorigenesis, tumor progression, and metastatic dissemination. However, the role of this RNA modification in thyroid cancer still remains poorly investigated. In this study, m6A-related RNA methylation profiles are compared between a normal thyroid cell line and different thyroid cancer cell lines. With this approach, it was possible to identify the different patterns of m6A modification in different thyroid cancer models. Furthermore, by silencing METTL3, which is the main player in the RNA methylation machinery, it was possible to evaluate the impact of m6A modification on gene expression in an anaplastic thyroid cancer model. This experimental approach allowed us to identify DDI2 as a gene specifically controlled by the m6A modification in anaplastic thyroid cancer cell lines. Altogether, these data are a proof of concept that RNA methylation widely occurs in thyroid cancer cell models and open a way forward in the search for new molecular patterns for diagnostic discrimination between benign and malignant lesions

    Thyroid-specific transcription factors control Hex promoter activity

    Get PDF
    The homeobox-containing gene Hex is expressed in several cell types, including thyroid follicular cells, in which it regulates the transcription of tissue-specific genes. In this study the regulation of Hex promoter activity was investigated. Using co-transfection experiments, we demonstrated that the transcriptional activity of the Hex gene promoter in rat thyroid FRTL-5 cells is ∼10-fold greater than that observed in HeLa and NIH 3T3 cell lines (which do not normally express the Hex gene). To identify the molecular mechanisms underlying these differences, we evaluated the effect of the thyroid-specific transcription factor TTF-1 on the Hex promoter activity. TTF-1 produced 3-4-fold increases in the Hex promoter activity. Gel-retardation assays and mutagenesis experiments revealed the presence of functionally relevant TTF-1 binding sites in the Hex promoter region. These in vitro data may also have functional relevance in vivo, since a positive correlation between TTF-1 and Hex mRNAs was demonstrated in human thyroid tissues by means of RT-PCR analysis. The TTF-1 effect, however, is not sufficient to explain the difference in Hex promoter activity between FRTL-5 and cells that do not express the Hex gene. For this reason, we tested whether Hex protein is able to activate the Hex promoter. Indeed, co-transfection experiments indicate that Hex protein is able to increase the activity of its own promoter in HeLa cells ∼4-fold. TTF-1 and Hex effects are additive: when transfected together in HeLa cells, the Hex promoter activity is increased 6-7-fold. Thus, the contemporary presence of both TTF-1 and Hex could be sufficient to explain the higher transcriptional activity of the Hex promoter in thyroid cells with respect to cell lines that do not express the Hex gene. These findings demonstrate the existence of direct cross-regulation between thyroid-specific transcription factors

    Redundant domains contribute to the transcriptional activity of the thyroid transcription factor 1.

    Get PDF
    The thyroid transcription factor 1 (TTF-1) is a homeodomain-containing protein implicated in the activation of thyroid-specific gene expression. Here we report that TTF-1 is capable of activating transcription from thyroglobulin and, to a lesser extent, thyroperoxidase gene promoters in nonthyroid cells. Full transcriptional activation of the thyroglobulin promoter by TTF-1 requires the presence of at least two TTF-1 binding sites. TTF-1 activates transcription via two functionally redundant transcriptional activation domains that as suggested by competition experiments, could use a common intermediary factor

    Precision oncology for RET-related tumors

    Get PDF
    Aberrant activation of the RET proto-oncogene is implicated in a plethora of cancers. RET gain-of-function point mutations are driver events in multiple endocrine neoplasia 2 (MEN2) syndrome and in sporadic medullary thyroid cancer, while RET rearrangements are driver events in several non-medullary thyroid cancers. Drugs able to inhibit RET have been used to treat RET-mutated cancers. Multikinase inhibitors were initially used, though they showed modest efficacy and significant toxicity. However, new RET selective inhibitors, such as selpercatinib and pralsetinib, have recently been tested and have shown good efficacy and tolerability, even if no direct comparison is yet available between multikinase and selective inhibitors. The advent of high-throughput technology has identified cancers with rare RET alterations beyond point mutations and fusions, including RET deletions, raising questions about whether these alterations have a functional effect and can be targeted by RET inhibitors. In this mini review, we focus on tumors with RET deletions, including deletions/insertions (indels), and their response to RET inhibitors
    • …
    corecore