51,751 research outputs found

    Phase diagram of two-species Bose-Einstein condensates in an optical lattice

    Full text link
    The exact macroscopic wave functions of two-species Bose-Einstein condensates in an optical lattice beyond the tight-binding approximation are studied by solving the coupled nonlinear Schrodinger equations. The phase diagram for superfluid and insulator phases of the condensates is determined analytically according to the macroscopic wave functions of the condensates, which are seen to be traveling matter waves.Comment: 13 pages, 2 figure

    Controllable Persistent Atom Current of Bose-Einstein Condensates in an Optical Lattice Ring

    Full text link
    In this paper the macroscopic quantum states of Bose-Einstein condensates in optical lattices is studied by solving the periodic Gross-Pitaevskii equation in one-dimensional geometry. It is shown that an exact solution seen to be a travelling wave of excited macroscopic quantum states resultes in a persistent atom current which can be controlled by adjusting of the barrier height of the optical periodic potential. A critical condition to generate the travelling wave is demonstrated and we moreover propose a practical experiment to realize the persistent atom current in a toroidal atom waveguide.Comment: 9 pages, 1 figure

    Projector operators for the no-core shell model

    Get PDF
    Projection operators for the use within ab initio no-core shell model, are suggested.Comment: 3 page

    Fermi-liquid ground state in n-type copper-oxide superconductor Pr0.91Ce0.09LaCuO4-y

    Full text link
    We report nuclear magnetic resonance studies on the low-doped n-type copper-oxide Pr_{0.91}LaCe_{0.09}CuO_{4-y} (T_c=24 K) in the superconducting state and in the normal state uncovered by the application of a strong magnetic field. We find that when the superconductivity is removed, the underlying ground state is the Fermi liquid state. This result is at variance with that inferred from previous thermal conductivity measurement and contrast with that in p-type copper-oxides with a similar doping level where high-T_c superconductivity sets in within the pseudogap phase. The data in the superconducting state are consistent with the line-nodes gap model.Comment: version to appear in Phys. Rev. Let

    Carrier-Concentration Dependence of the Pseudogap Ground State of Superconducting Bi2Sr2-xLaxCuO6+delta Revealed by 63,65Cu-Nuclear Magnetic Resonance in Very High Magnetic Fields

    Full text link
    We report the results of the Knight shift by 63,65Cu-nuclear-magnetic resonance (NMR) measurements on single-layered copper-oxide Bi2Sr2-xLaxCuO6+delta conducted under very high magnetic fields up to 44 T. The magnetic field suppresses superconductivity completely and the pseudogap ground state is revealed. The 63Cu-NMR Knight shift shows that there remains a finite density of states (DOS) at the Fermi level in the zero-temperature limit, which indicates that the pseudogap ground state is a metallic state with a finite volume of Fermi surface. The residual DOS in the pseudogap ground state decreases with decreasing doping (increasing x) but remains quite large even at the vicinity of the magnetically ordered phase of x > 0.8, which suggests that the DOS plunges to zero upon approaching the Mott insulating phase.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let

    High Kinetic Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field

    Get PDF
    We present superconducting microwave-frequency resonators based on NbTiN nanowires. The small cross section of the nanowires minimizes vortex generation, making the resonators resilient to magnetic fields. Measured intrinsic quality factors exceed 2×1052\times 10^5 in a 66 T in-plane magnetic field, and 3×1043\times 10^4 in a 350350 mT perpendicular magnetic field. Due to their high characteristic impedance, these resonators are expected to develop zero-point voltage fluctuations one order of magnitude larger than in standard coplanar waveguide resonators. These properties make the nanowire resonators well suited for circuit QED experiments needing strong coupling to quantum systems with small electric dipole moments and requiring a magnetic field, such as electrons in single and double quantum dots

    Magnetic Field Effect on the Pseudogap Temperature within Precursor Superconductivity

    Full text link
    We determine the magnetic field dependence of the pseudogap closing temperature T* within a precursor superconductivity scenario. Detailed calculations with an anisotropic attractive Hubbard model account for a recently determined experimental relation in BSCCO between the pseudogap closing field and the pseudogap temperature at zero field, as well as for the weak initial dependence of T* at low fields. Our results indicate that the available experimental data are fully compatible with a superconducting origin of the pseudogap in cuprate superconductors.Comment: 4 pages, 3 figure
    • …
    corecore