3,843 research outputs found
Cosmological model with non-minimally coupled fermionic field
A model for the Universe is proposed whose constituents are: (a) a dark
energy field modeled by a fermionic field non-minimally coupled with the
gravitational field, (b) a matter field which consists of pressureless baryonic
and dark matter fields and (c) a field which represents the radiation and the
neutrinos. The coupled system of Dirac's equations and Einstein field equations
is solved numerically by considering a spatially flat homogeneous and isotropic
Universe. It is shown that the proposed model can reproduce the expected
red-shift behaviors of the deceleration parameter, of the density parameters of
each constituent and of the luminosity distance. Furthermore, for small values
of the red-shift the constant which couples the fermionic and gravitational
fields has a remarkable influence on the density and deceleration parameters.Comment: Accepted for publication in Europhysics Letter
Evaluation of a measles vaccine campaign by oral-fluid surveys in a rural Kenyan district: interpretation of antibody prevalence data using mixture models
We evaluated the effectiveness of a measles vaccine campaign in rural Kenya, based on oral-fluid surveys and mixture-modelling analysis. Specimens were collected from 886 children aged 9 months to 14 years pre-campaign and from a comparison sample of 598 children aged 6 months post-campaign. Quantitative measles-specific antibody data were obtained by commercial kit. The estimated proportions of measles-specific antibody negative in children aged 0ā4, 5ā9 and 10ā14 years were 51%, 42% and 27%, respectively, pre- campaign and 18%, 14% and 6%, respectively, post-campaign. We estimate a reduction in the proportion susceptible of 65ā78%, with ~85% of the population recorded to have received vaccine. The proportion of āweakā positive individuals rose from 35% pre-campaign to 54% post-campaign. Our results confirm the effectiveness of the campaign in reducing susceptibility to measles and demonstrate the potential of oral-fluid studies to monitor the impact of measles vaccination campaigns
Statistical mechanics of double-stranded semi-flexible polymers
We study the statistical mechanics of double-stranded semi-flexible polymers
using both analytical techniques and simulation. We find a transition at some
finite temperature, from a type of short range order to a fundamentally
different sort of short range order. In the high temperature regime, the
2-point correlation functions of the object are identical to worm-like chains,
while in the low temperature regime they are different due to a twist
structure. In the low temperature phase, the polymers develop a kink-rod
structure which could clarify some recent puzzling experiments on actin.Comment: 4 pages, 3 figures; final version for publication - slight
modifications to text and figure
Noether symmetry for non-minimally coupled fermion fields
A cosmological model where a fermion field is non-minimally coupled with the
gravitational field is studied. By applying Noether symmetry the possible
functions for the potential density of the fermion field and for the coupling
are determined. Cosmological solutions are found showing that the non-minimally
coupled fermion field behaves as an inflaton describing an accelerated
inflationary scenario, whereas the minimally coupled fermion field describes a
decelerated period being identified as dark matter.Comment: Revised version accepted for publication in Classical and Quantum
Gravit
Tachyonization of the \LaCDM cosmological model
In this work a tachyonization of the CDM model for a spatially flat
Friedmann-Robertson-Walker space-time is proposed. A tachyon field and a
cosmological constant are considered as the sources of the gravitational field.
Starting from a stability analysis and from the exact solutions for a standard
tachyon field driven by a given potential, the search for a large set of
cosmological models which contain the CDM model is investigated. By
the use of internal transformations two new kinds of tachyon fields are derived
from the standard tachyon field, namely, a complementary and a phantom tachyon
fields. Numerical solutions for the three kinds of tachyon fields are
determined and it is shown that the standard and complementary tachyon fields
reproduces the CDM model as a limiting case. The standard tachyon
field can also describe a transition from an accelerated to a decelerated
regime, behaving as an inflaton field at early times and as a matter field at
late times. The complementary tachyon field always behaves as a matter field.
The phantom tachyon field is characterized by a rapid expansion where its
energy density increases with time.Comment: Version accepted for publication in GR
Specific heat of MgB in a one- and a two-band model from first-principles calculations
The heat capacity anomaly at the transition to superconductivity of the
layered superconductor MgB is compared to first-principles calculations
with the Coulomb repulsion, , as the only parameter which is fixed to
give the measured . We solve the Eliashberg equations for both an
isotropic one-band and a two-band model with different superconducting gaps on
the and Fermi surfaces. The agreement with experiments is
considerably better for the two-band model than for the one-band model.Comment: final published versio
Constraining non-minimally coupled tachyon fields by Noether symmetry
A model for a spatially flat homogeneous and isotropic Universe whose
gravitational sources are a pressureless matter field and a tachyon field
non-minimally coupled to the gravitational field is analyzed. Noether symmetry
is used to find the expressions for the potential density and for the coupling
function, and it is shown that both must be exponential functions of the
tachyon field. Two cosmological solutions are investigated: (i) for the early
Universe whose only source of the gravitational field is a non-minimally
coupled tachyon field which behaves as an inflaton and leads to an exponential
accelerated expansion and (ii) for the late Universe whose gravitational
sources are a pressureless matter field and a non-minimally coupled tachyon
field which plays the role of dark energy and is the responsible of the
decelerated-accelerated transition period.Comment: 11 pages, 5 figures. Version accepted for publication in Classical
and Quantum Gravit
Thermodynamics and Kinetic Theory of Relativistic Gases in 2-D Cosmological Models
A kinetic theory of relativistic gases in a two-dimensional space is
developed in order to obtain the equilibrium distribution function and the
expressions for the fields of energy per particle, pressure, entropy per
particle and heat capacities in equilibrium. Furthermore, by using the method
of Chapman and Enskog for a kinetic model of the Boltzmann equation the
non-equilibrium energy-momentum tensor and the entropy production rate are
determined for a universe described by a two-dimensional Robertson-Walker
metric. The solutions of the gravitational field equations that consider the
non-equilibrium energy-momentum tensor - associated with the coefficient of
bulk viscosity - show that opposed to the four-dimensional case, the cosmic
scale factor attains a maximum value at a finite time decreasing to a "big
crunch" and that there exists a solution of the gravitational field equations
corresponding to a "false vacuum". The evolution of the fields of pressure,
energy density and entropy production rate with the time is also discussed.Comment: 23 pages, accepted in PR
Trapping microparticles in a structured dark focus
We experimentally demonstrate stable trapping and controlled manipulation of
silica microspheres in a structured optical beam consisting of a dark focus
surrounded by light in all directions - the so-called Dark Focus Tweezer.
Results from power spectrum and potential analysis demonstrate the
non-harmonicity of the trapping potential landspace, which is reconstructed
from experimental data in agreement to Lorentz-Mie numerical simulations.
Applications of the dark tweezer in levitated optomechanics and biophysics are
discussed.Comment: Final versio
- ā¦