31 research outputs found

    Known and unknown requirements in healthcare

    Get PDF
    We report experience in requirements elicitation of domain knowledge from experts in clinical and cognitive neurosciences. The elicitation target was a causal model for early signs of dementia indicated by changes in user behaviour and errors apparent in logs of computer activity. A Delphi-style process consisting of workshops with experts followed by a questionnaire was adopted. The paper describes how the elicitation process had to be adapted to deal with problems encountered in terminology and limited consensus among the experts. In spite of the difficulties encountered, a partial causal model of user behavioural pathologies and errors was elicited. This informed requirements for configuring data- and text-mining tools to search for the specific data patterns. Lessons learned for elicitation from experts are presented, and the implications for requirements are discussed as “unknown unknowns”, as well as configuration requirements for directing data-/text-mining tools towards refining awareness requirements in healthcare applications

    Improving the stability of 11C–labeled L-methionine with ascorbate

    No full text
    Background: Carbon-11 labeled L-methionine (11C–MET) is a popular tracer used in the clinic for imaging brain tumors with positron emission tomography. However, the stability of 11C–MET in its final formulation is not well documented in literature. Recently, we observed fast degradation of HPLC-purified 11C–MET over time, and systematic investigation was conducted to identify the cause. Results: In this study, we verified the degraded product as 11C–labeled methionine sulfoxide (11C–METSO). To minimize oxidation, ascorbate (100 ppm) was added to the HPLC eluant, and the resulting HPLC-purified 11C–MET was stable in the final formulation solution without noticeable degradation for up to 1 h after the end of synthesis. Conclusions: Our data suggest that to minimize degradation, ascorbate can be added to the 11C–MET formulation solution especially if it is not administered into patients soon after the end of synthesis.Medicine, Faculty ofNon UBCRadiology, Department ofReviewedFacult

    Production of Autopolyploid Lowland Switchgrass Lines Through In Vitro Chromosome Doubling.

    Get PDF
    Citation: Yang, Z., Shen, Z, Tetreault, H., Johnson, L., Friebe, B., Frazier, T., Huang, L. K., Burklew, C., Zhang, X. Q., & Zhao, B. (2014). Production of Autopolyploid Lowland Switchgrass Lines Through In Vitro Chromosome Doubling. Retrieved from http://krex.ksu.eduSwitchgrass is considered one of the most promising energy crops. However, breeding of elite switchgrass cultivars is required to meet the challenges of large scale and sustainable biomass production. As a native perennial adapted to North America, switchgrass has lowland and upland ecotypes, where most lowland ecotypes are tetraploid (2n=4x=36), and most upland ecotypes are predominantly octoploid (2n=8x=72). Hybridization between lowland and upland switchgrass plants could identify new cultivars with heterosis. However, crossing between tetraploid and octoploid switchgrass is rare in nature. Therefore, in order to break down the cross incompatibility barrier between tetraploid lowland and octoploid upland switchgrass lines, we developed autoployploid switchgrass lines from an anueploid lowland cv. Alamo. In this study, colchicine was used in liquid and solid mediums to chemically induce chromosome doubling in embryogenic calli derived from cv. Alamo. Thirteen autopolyploid switchgrass lines were regenerated from seedlings and identified using flow cytometry. The autoplyploid switchgrass plants exhibited increased stomata aperture and stem size in comparison with the cv. Alamo. The most autooplyploid plants were regenerated from switchgrass calli that were treated with 0.04 % colchicine in liquid medium for 13 days. One autopolyploid switchgrass line, VT8-1, was successfully crossed to the octoploid upland cv. Blackwell. The autoployploid and the derived inter-ecotype hybrids were confirmed by in situ hybridization and molecular marker analysis. Therefore, the results of this study show that an autopolyploid, generated by chemically induced chromosome doubling of lowland cv. Alamo, is cross compatible with upland octoploid switchgrass cultivars. The outcome of this study may have significant applications in switchgrass hybrid breeding
    corecore