141 research outputs found

    Splenectomy and proximal lieno-renal shunt in a factor five deficient patient with extra-hepatic portal vein obstruction

    Get PDF
    BACKGROUND: The clinico-surgical implication and successful management of a rare case of factor five (V) deficiency with portal hypertension and hypersplenism due to idiopathic extra-hepatic portal venous obstruction is presented. CASE PRESENTATION: A 16-year old boy had gastro-esophageal variceal bleeding, splenomegaly and hypersplenism. During preoperative workup prolonged prothrombin time and activated partial thromboplastin time were detected, which on further evaluation turned out to be due to factor V deficiency. Proximal lieno-renal shunt and splenectomy were successfully performed with transfusion of fresh frozen plasma during and after the surgical procedure. At surgery there was no excessive bleeding. The perioperative course was uneventful and the patient is doing well on follow up. CONCLUSION: Surgical portal decompressive procedures can be safely undertaken in clotting factor deficient patients with portal hypertension if meticulous surgical hemostasis is achieved at operation and the deficient factor is adequately replaced in the perioperative period

    Paired Activating and Inhibitory Immunoglobulin-like Receptors, MAIR-I and MAIR-II, Regulate Mast Cell and Macrophage Activation

    Get PDF
    Immune responses are regulated by opposing positive and negative signals triggered by the interaction of activating and inhibitory cell surface receptors with their ligands. Here, we describe novel paired activating and inhibitory immunoglobulin-like receptors, designated myeloid-associated immunoglobulin-like receptor (MAIR) I and MAIR-II, whose extracellular domains are highly conserved by each other. MAIR-I, expressed on the majority of myeloid cells, including macrophages, granulocytes, mast cells, and dendritic cells, contains the tyrosine-based sorting motif and the immunoreceptor tyrosine-based inhibitory motif-like sequences in the cytoplasmic domain and mediates endocytosis of the receptor and inhibition of IgE-mediated degranulation from mast cells. On the other hand, MAIR-II, expressed on subsets of peritoneal macrophages and B cells, associates with the immunoreceptor tyrosine-based activation motif-bearing adaptor DAP12 and stimulates proinflammatory cytokines and chemokine secretions from macrophages. Thus, MAIR-I and MAIR-II play important regulatory roles in cell signaling and immune responses

    A new shape for an old function: lasting effect of a physiologic surgical restoration of the left ventricle

    Get PDF
    BACKGROUND: Long-term morphofunctional outcome may vary widely in surgical anterior left ventricular wall restoration, suggesting variability in post-surgical remodeling similar to that observed following acute myocardial infarction. The aim of this pilot study was to demonstrate that surgical restoration obtained with a particular shape of endoventricular patch leads to steady morphofunctional ventricular improvement when geometry, volume and residual akinesia can be restored as normal as possible. METHODS: This study involved 12 consecutive patients with previous anterior myocardial infarction, dilated cardiomyopathy and no mitral procedures, who underwent left ventricular reconstruction and coronary revascularization between May 2002 and May 2003 using a small, narrow, oval patch aiming at a volume ≤ 45 mL/m(2 )with elliptical shape. Eleven geometric parameters were examined preoperatively and at least 3, 12 and 24 months after the operation by serial echocardiographic studies and evaluated by paired t test taking the time of surgery as a starting point for remodeling. RESULTS: All patients were in NYHA class 1 at follow-up. Patch geometry obtained a conical shape of the ventricle with new apex, physiologic rearrangement of functioning myocardial wall and small residual akinesia. Ventricular changes at the four time-points showed that all parameters improved significantly compared to preoperative values (end-diastolic volume = 184.2 ± 23.9 vs 139.9 ± 22.0, p = 0.001; vs 151.0 ± 33.8, p = 0.06; vs 144.9 ± 34.0, p = 0.38; end-systolic volume = 125.7 ± 20.6 vs 75.2 ± 14.1, p = 0.001; vs 82.1 ± 23.9, p = 0,18; vs 77.1 ± 19.4, p = 0.41) without further changes during follow-up except for wall motion score index (2.0 ± 0.2 to 1.7 ± 0.2, to 1.4 ± 0.2, to 1.3 ± 0.2) and percentage of akinesia (30.4 ± 7.5 to 29.3 ± 4.2, to 19.8 ± 11.6, to 14.5 ± 7.2) which slowly and significantly improved suggesting a positive post-surgery remodeling. CONCLUSION: Ventricular reconstruction caring of physiological shape, volume, revascularization and residual akinesia obtained a steady geometry. Positive remodeling and equalization of geometrical outcome may persistently prevent long-term redilation

    Neural Mechanisms of Human Perceptual Learning: Electrophysiological Evidence for a Two-Stage Process

    Get PDF
    Artículo de publicación ISIBackground: Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed. Methodology/Principal Findings: We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz) and alpha (8-14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing.This research was supported by CONICYT doctoral grant to C.M.H. and by an ECOS-Sud/CONICYT grant C08S02 and FONDECYT 1090612 grant to D.C. and F.A

    Alterations of renal phenotype and gene expression profiles due to protein overload in NOD-related mouse strains

    Get PDF
    BACKGROUND: Despite multiple causes, Chronic Kidney Disease is commonly associated with proteinuria. A previous study on Non Obese Diabetic mice (NOD), which spontaneously develop type 1 diabetes, described histological and gene expression changes incurred by diabetes in the kidney. Because proteinuria is coincident to diabetes, the effects of proteinuria are difficult to distinguish from those of other factors such as hyperglycemia. Proteinuria can nevertheless be induced in mice by peritoneal injection of Bovine Serum Albumin (BSA). To gain more information on the specific effects of proteinuria, this study addresses renal changes in diabetes resistant NOD-related mouse strains (NON and NOD.B10) that were made to develop proteinuria by BSA overload. METHODS: Proteinuria was induced by protein overload on NON and NOD.B10 mouse strains and histology and microarray technology were used to follow the kidney response. The effects of proteinuria were assessed and subsequently compared to changes that were observed in a prior study on NOD diabetic nephropathy. RESULTS: Overload treatment significantly modified the renal phenotype and out of 5760 clones screened, 21 and 7 kidney transcripts were respectively altered in the NON and NOD.B10. Upregulated transcripts encoded signal transduction genes, as well as markers for inflammation (Calmodulin kinase beta). Down-regulated transcripts included FKBP52 which was also down-regulated in diabetic NOD kidney. Comparison of transcripts altered by proteinuria to those altered by diabetes identified mannosidase 2 alpha 1 as being more specifically induced by proteinuria. CONCLUSION: By simulating a component of diabetes, and looking at the global response on mice resistant to the disease, by virtue of a small genetic difference, we were able to identify key factors in disease progression. This suggests the power of this approach in unraveling multifactorial disease processes

    Phosphoinositide 3-Kinaseγ Controls the Intracellular Localization of CpG to Limit DNA-PKcs-Dependent IL-10 Production in Macrophages

    Get PDF
    Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG) stimulate innate immune responses. Phosphoinositide 3-kinase (PI3K) has been implicated in CpG-induced immune activation; however, its precise role has not yet been clarified. CpG-induced production of IL-10 was dramatically increased in macrophages deficient in PI3Kγ (p110γ−/−). By contrast, LPS-induced production of IL-10 was unchanged in the cells. CpG-induced, but not LPS-induced, IL-10 production was almost completely abolished in SCID mice having mutations in DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Furthermore, wortmannin, an inhibitor of DNA-PKcs, completely inhibited CpG-induced IL-10 production, both in wild type and p110γ−/− cells. Microscopic analyses revealed that CpG preferentially localized with DNA-PKcs in p110γ−/− cells than in wild type cells. In addition, CpG was preferentially co-localized with the acidic lysosomal marker, LysoTracker, in p110γ−/− cells, and with an early endosome marker, EEA1, in wild type cells. Over-expression of p110γ in Cos7 cells resulted in decreased acidification of CpG containing endosome. A similar effect was reproduced using kinase-dead mutants, but not with a ras-binding site mutant, of p110γ. Thus, it is likely that p110γ, in a manner independent of its kinase activity, inhibits the acidification of CpG-containing endosomes. It is considered that increased acidification of CpG-containing endosomes in p110γ−/− cells enforces endosomal escape of CpG, which results in increased association of CpG with DNA-PKcs to up-regulate IL-10 production in macrophages

    Imaging Long-Term Fate of Intramyocardially Implanted Mesenchymal Stem Cells in a Porcine Myocardial Infarction Model

    Get PDF
    The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [18F]FEAU to monitor the long-term (up to 5 months) spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC) and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [18F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33–35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC–associated [18F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [18F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months) of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI

    Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells.</p> <p>Methods</p> <p>Colon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF). DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting.</p> <p>Results</p> <p>Neurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK) and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC), whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K), TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR) transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells.</p> <p>Conclusions</p> <p>While acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116 cells. In these cells, neurotensin-induced activation of ERK and stimulation of DNA synthesis was PKC-dependent, whereas activation of the PI3K/Akt pathway was mediated by stimulation of metalloproteinases and subsequent transactivation of the EGFR. Thus, the data show that the signalling mechanisms mediating the effects of neurotensin involve multiple pathways and are cell-dependent.</p
    corecore