309 research outputs found

    Observation of magnetic fragmentation in spin ice

    Get PDF
    Fractionalised excitations that emerge from a many body system have revealed rich physics and concepts, from composite fermions in two-dimensional electron systems, revealed through the fractional quantum Hall effect, to spinons in antiferromagnetic chains and, more recently, fractionalisation of Dirac electrons in graphene and magnetic monopoles in spin ice. Even more surprising is the fragmentation of the degrees of freedom themselves, leading to coexisting and a priori independent ground states. This puzzling phenomenon was recently put forward in the context of spin ice, in which the magnetic moment field can fragment, resulting in a dual ground state consisting of a fluctuating spin liquid, a so-called Coulomb phase, on top of a magnetic monopole crystal. Here we show, by means of neutron scattering measurements, that such fragmentation occurs in the spin ice candidate Nd2_2Zr2_2O7_7. We observe the spectacular coexistence of an antiferromagnetic order induced by the monopole crystallisation and a fluctuating state with ferromagnetic correlations. Experimentally, this fragmentation manifests itself via the superposition of magnetic Bragg peaks, characteristic of the ordered phase, and a pinch point pattern, characteristic of the Coulomb phase. These results highlight the relevance of the fragmentation concept to describe the physics of systems that are simultaneously ordered and fluctuating.Comment: accepted in Nature Physic

    StepFormer: Self-supervised Step Discovery and Localization in Instructional Videos

    Full text link
    Instructional videos are an important resource to learn procedural tasks from human demonstrations. However, the instruction steps in such videos are typically short and sparse, with most of the video being irrelevant to the procedure. This motivates the need to temporally localize the instruction steps in such videos, i.e. the task called key-step localization. Traditional methods for key-step localization require video-level human annotations and thus do not scale to large datasets. In this work, we tackle the problem with no human supervision and introduce StepFormer, a self-supervised model that discovers and localizes instruction steps in a video. StepFormer is a transformer decoder that attends to the video with learnable queries, and produces a sequence of slots capturing the key-steps in the video. We train our system on a large dataset of instructional videos, using their automatically-generated subtitles as the only source of supervision. In particular, we supervise our system with a sequence of text narrations using an order-aware loss function that filters out irrelevant phrases. We show that our model outperforms all previous unsupervised and weakly-supervised approaches on step detection and localization by a large margin on three challenging benchmarks. Moreover, our model demonstrates an emergent property to solve zero-shot multi-step localization and outperforms all relevant baselines at this task.Comment: CVPR'2

    Spin correlations and exchange in square lattice frustrated ferromagnets

    Full text link
    The J1-J2 model on a square lattice exhibits a rich variety of different forms of magnetic order that depend sensitively on the ratio of exchange constants J2/J1. We use bulk magnetometry and polarized neutron scattering to determine J1 and J2 unambiguously for two materials in a new family of vanadium phosphates, Pb2VO(PO4)2 and SrZnVO(PO4)2, and we find that they have ferromagnetic J1. The ordered moment in the collinear antiferromagnetic ground state is reduced, and the diffuse magnetic scattering is enhanced, as the predicted bond-nematic region of the phase diagram is approached.Comment: 4 pages, 4 figure

    The magnetic dynamics of NiPS3_3

    Full text link
    Neutron spectroscopy measurements have been performed on single crystals of the antiferromagnetic van der Waals compound NiPS3_3. Linear spin wave theory using a Heisenberg Hamiltonian with single-ion anisotropies has been applied to determine the magnetic exchange parameters and the nature of the anisotropy. The analysis reveals that NiPS3_3 is less two-dimensional than its sister compounds, with a relatively large ferromagnetic exchange of J′=−0.3J^{\prime} = -0.3 meV between the layered \emph{ab} planes. In-plane magnetic exchange interactions up to the third nearest-neighbour were required to fit the data. The nearest-neighbour exchange was ferromagnetic with J1=−2.6J_1 = -2.6 meV, the second neighbour was antiferromagnetic and small with J2=0.2J_2 = 0.2 meV, and the dominant antiferromagnetic third neighbour exchange was J3=13.5J_3 = 13.5 meV. The anisotropy was shown to be largely XY-like with a small uniaxial component, leading to the appearance of two low-energy spin wave modes in the spin wave spectrum at the Brillouin zone centre. The analysis could reproduce the spin wave energies, however there are discrepancies with the calculated neutron intensities hinting at more exotic phenomena.Comment: 12 pages, 8 figures, 33 reference
    • …
    corecore